NPN-type small and medium power switching transistors in 3DK series are used to conduct analyses and studies of accelerating degradation. Through three group studies of accelerating degradation in different temperatur...NPN-type small and medium power switching transistors in 3DK series are used to conduct analyses and studies of accelerating degradation. Through three group studies of accelerating degradation in different temperature-humidity constant stresses, the failure sensitive parameters of transistors are identified and the lifetime of samples is extrapolated from the performance degradation data. Average lifetimes in three common distributions are given, when, combined with the Hallberg-Peck temperature-humidity model, the storage lifetime of transistor samples in the natural storage condition is extrapolated between 105-10^7 h. According to its definition, the accelerating factor is 1462 in 100 ℃/100% relative humidity (RH) stress condition, and 25 ℃/25% RH stress con- dition. Finally, the degradation causes of performance parameters of the test samples are analyzed. The findings can provide certain references for the storage reliability of domestic transistors.展开更多
The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift ...The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift model and the RLC circuit equations of RSD main loop, the simulation waveforms of current and voltage on RSD are acquired through iterative calculation by using the fourth order Runge-Kutta method, then the curve of transient power on RSD versus time is obtained. The result shows that the total dissipation on RSD is trivial compared with the pulse discharge energy and the commutation dissipation can be nearly ignored compared with the quasi-static dissipation. These characteristics can make the repetitive frequency of RSD increase largely. The experimental results prove the validity of simulation calculations. The influence factors on power dissipation are discussed. The power dissipation increases with the increase of the peak current and the n-base width and with the decrease of n-base doping concentration. In order to keep a low power dissipation, it is suggested that the n-base width should be smaller than 320μm when doping concentration is 1.0×10^14cm^-3 while the doping concentration should be higher than 5.8×10^13cm^-3 when n-base width is 270μm.展开更多
As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagno...As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagnoses the essential interaction relationship between interference and switching activity based on the timely and area measured waveform,analyzes and studies the production mechanism and coupling path of interference mode,and sets up circuit model according to the features of transverse mode interference and common mode interference.Put forward different suppression methods finally.展开更多
This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V proces...This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.展开更多
For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control ...For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circu...Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.展开更多
Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs)....Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.展开更多
High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch...High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch. In this study, the RSD turn-on conditions were investigated by numerical analysis and device simulation as well as the experiments conducted to validate the turn-on conditions. A design of a triggering high-voltage RSD is presented based on a saturable transformer.展开更多
The full-bridge zero-voltage and zero-current switching inverter, which can adjust the output power by keeping the duty-cycle of lagging arm constant, changing the duty-cycle of leading arm, is a common circuit topolo...The full-bridge zero-voltage and zero-current switching inverter, which can adjust the output power by keeping the duty-cycle of lagging arm constant, changing the duty-cycle of leading arm, is a common circuit topology of soft-switching inverter arc welding power supplies. However, the output power still remains a certain value when the duty-cycle of leading arm decreases to zero. The working-mode of soft-switching inverter and the waveforms of major parameters with the condition of duty-cycle of leading arm being zero are studied in this paper. U-1 characteristic experiments prove that the minimum output power of soft-switching circuit, which depends on the charged voltage of capacitors in parallel with leading arm, can be decreased by reducing the duty-cycle of lagging arm. By switching working-modes between half-bridge and full-bridge, the output power can swing from zero to the power rating.展开更多
Through theoretical analysis of thyristor switch, criterion of turn-off was derived for the design of thyristor switch. The expression of parameter design and its math model during the turn-off were deduced. The simul...Through theoretical analysis of thyristor switch, criterion of turn-off was derived for the design of thyristor switch. The expression of parameter design and its math model during the turn-off were deduced. The simulation and experiment have been accomplished to validate the analysis.展开更多
Present-day small hydropower plants (SHPs) have a large development potential because of the increasing interest in renewable resources and distributed energy generation, therefore, there are many SHPs in places of Ch...Present-day small hydropower plants (SHPs) have a large development potential because of the increasing interest in renewable resources and distributed energy generation, therefore, there are many SHPs in places of China where are rich in water resources. However, it has caused overvoltages in the distribution network, and which is even worse for the switching overvoltage such as isolated network operation, changing power supply path. The simple network model is used to analyze the reasons of the switching overvoltage, and the simulation software DIgSILENT/PowerFactory is used to check out the results of the theoretical analysis.展开更多
Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, s...Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, switch and diode currents, power losses, and efficiencies under over modulation operation are analyzed and compared for converter characteristics study, performance evaluation and topology selection for CSRM and TSRM drive systems. The switch and diode silicon volumes required for each CSRM and TSRM drives are also compared according to their corresponding currents at the equivalent machine torque versus speed operating points.展开更多
Voltage and frequency are usually considered and assessed independently in the design and operation of electrical networks. However, these two are linked. Each and every malfunctioning electrical system has an impact ...Voltage and frequency are usually considered and assessed independently in the design and operation of electrical networks. However, these two are linked. Each and every malfunctioning electrical system has an impact on both voltage and frequency. This paper presents the opportunity for monitoring the distributed electrical energy by means of a system that monitors, controls, and provides a breakpoint based on high or low voltage and frequency tripping mechanism that avoids any damage to the load. The designed system comprised a switch mode power supply (SMPS), a direct digital synthesizer (DDS), and PIC16F876A microcontroller techniques for stable voltage and frequency outputs. Proteus design suite version 8.11 software and Benchcope SDS1102CN were used for modeling and simulation. The hardware prototype was implemented at a telecom cell site for data capturing and analysis. Test results showed that the implementation of the prototype provided stable and constant outputs of 222 V/50 Hz and 112 V/60 Hz which constituted 99% and 99.8% efficiency for voltage and frequency performance respectively. The paper also discusses different technologies that can be adopted by the system to mitigate voltage and frequency effects on customer appliances.展开更多
The results are presented of an experimental investigation of heat transfer in an air-liquid cooling system for a Switch-Mode Power Supply (SMPS) for TV digital power amplifiers. Since these SMPSs are characterized by...The results are presented of an experimental investigation of heat transfer in an air-liquid cooling system for a Switch-Mode Power Supply (SMPS) for TV digital power amplifiers. Since these SMPSs are characterized by high power and high compactness, thereby making the standard cooling techniques difficult to be used, a new cooling system is developed, using water and air as the cooling media. The active components (MOSFETs) are cooled with a liquid cold-plate, the passive ones (condensers, transformers, coils) with an air flow, in turn cooled by the cold-plate. By inserting the cooling system in an experimental tool where it is possible to control the cooling water, measurements are made of temperature in the significant points of the SMPS. The electric efficiency is also measured. The evaluation of the thermal performance of this cooling system is useful in order to limit its maximum operational temperature. The efficacy of the cooling system is demonstrated;the trends of efficiency and power dissipation are evidenced.展开更多
文摘NPN-type small and medium power switching transistors in 3DK series are used to conduct analyses and studies of accelerating degradation. Through three group studies of accelerating degradation in different temperature-humidity constant stresses, the failure sensitive parameters of transistors are identified and the lifetime of samples is extrapolated from the performance degradation data. Average lifetimes in three common distributions are given, when, combined with the Hallberg-Peck temperature-humidity model, the storage lifetime of transistor samples in the natural storage condition is extrapolated between 105-10^7 h. According to its definition, the accelerating factor is 1462 in 100 ℃/100% relative humidity (RH) stress condition, and 25 ℃/25% RH stress con- dition. Finally, the degradation causes of performance parameters of the test samples are analyzed. The findings can provide certain references for the storage reliability of domestic transistors.
基金supported by the National Natural Science Foundation of China (Grant Nos 50277016 and 50577028)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050487044)
文摘The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift model and the RLC circuit equations of RSD main loop, the simulation waveforms of current and voltage on RSD are acquired through iterative calculation by using the fourth order Runge-Kutta method, then the curve of transient power on RSD versus time is obtained. The result shows that the total dissipation on RSD is trivial compared with the pulse discharge energy and the commutation dissipation can be nearly ignored compared with the quasi-static dissipation. These characteristics can make the repetitive frequency of RSD increase largely. The experimental results prove the validity of simulation calculations. The influence factors on power dissipation are discussed. The power dissipation increases with the increase of the peak current and the n-base width and with the decrease of n-base doping concentration. In order to keep a low power dissipation, it is suggested that the n-base width should be smaller than 320μm when doping concentration is 1.0×10^14cm^-3 while the doping concentration should be higher than 5.8×10^13cm^-3 when n-base width is 270μm.
基金Tianjin Natunal science Foundation of China(No:05YFSYSF033)
文摘As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagnoses the essential interaction relationship between interference and switching activity based on the timely and area measured waveform,analyzes and studies the production mechanism and coupling path of interference mode,and sets up circuit model according to the features of transverse mode interference and common mode interference.Put forward different suppression methods finally.
文摘This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.
基金supported by the National Science Foundation of China(No.51607096)。
文摘For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
文摘Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.
文摘Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.
基金supported by the National Natural Science Foundation of China (Nos.50277016,50577028)Specialized Research Fund for the Doctoral Program of Higher Education (No.20050487044)
文摘High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch. In this study, the RSD turn-on conditions were investigated by numerical analysis and device simulation as well as the experiments conducted to validate the turn-on conditions. A design of a triggering high-voltage RSD is presented based on a saturable transformer.
文摘The full-bridge zero-voltage and zero-current switching inverter, which can adjust the output power by keeping the duty-cycle of lagging arm constant, changing the duty-cycle of leading arm, is a common circuit topology of soft-switching inverter arc welding power supplies. However, the output power still remains a certain value when the duty-cycle of leading arm decreases to zero. The working-mode of soft-switching inverter and the waveforms of major parameters with the condition of duty-cycle of leading arm being zero are studied in this paper. U-1 characteristic experiments prove that the minimum output power of soft-switching circuit, which depends on the charged voltage of capacitors in parallel with leading arm, can be decreased by reducing the duty-cycle of lagging arm. By switching working-modes between half-bridge and full-bridge, the output power can swing from zero to the power rating.
基金the National Meg-Science Engineering Project of the Chinese Government.
文摘Through theoretical analysis of thyristor switch, criterion of turn-off was derived for the design of thyristor switch. The expression of parameter design and its math model during the turn-off were deduced. The simulation and experiment have been accomplished to validate the analysis.
文摘Present-day small hydropower plants (SHPs) have a large development potential because of the increasing interest in renewable resources and distributed energy generation, therefore, there are many SHPs in places of China where are rich in water resources. However, it has caused overvoltages in the distribution network, and which is even worse for the switching overvoltage such as isolated network operation, changing power supply path. The simple network model is used to analyze the reasons of the switching overvoltage, and the simulation software DIgSILENT/PowerFactory is used to check out the results of the theoretical analysis.
文摘Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, switch and diode currents, power losses, and efficiencies under over modulation operation are analyzed and compared for converter characteristics study, performance evaluation and topology selection for CSRM and TSRM drive systems. The switch and diode silicon volumes required for each CSRM and TSRM drives are also compared according to their corresponding currents at the equivalent machine torque versus speed operating points.
文摘Voltage and frequency are usually considered and assessed independently in the design and operation of electrical networks. However, these two are linked. Each and every malfunctioning electrical system has an impact on both voltage and frequency. This paper presents the opportunity for monitoring the distributed electrical energy by means of a system that monitors, controls, and provides a breakpoint based on high or low voltage and frequency tripping mechanism that avoids any damage to the load. The designed system comprised a switch mode power supply (SMPS), a direct digital synthesizer (DDS), and PIC16F876A microcontroller techniques for stable voltage and frequency outputs. Proteus design suite version 8.11 software and Benchcope SDS1102CN were used for modeling and simulation. The hardware prototype was implemented at a telecom cell site for data capturing and analysis. Test results showed that the implementation of the prototype provided stable and constant outputs of 222 V/50 Hz and 112 V/60 Hz which constituted 99% and 99.8% efficiency for voltage and frequency performance respectively. The paper also discusses different technologies that can be adopted by the system to mitigate voltage and frequency effects on customer appliances.
文摘The results are presented of an experimental investigation of heat transfer in an air-liquid cooling system for a Switch-Mode Power Supply (SMPS) for TV digital power amplifiers. Since these SMPSs are characterized by high power and high compactness, thereby making the standard cooling techniques difficult to be used, a new cooling system is developed, using water and air as the cooling media. The active components (MOSFETs) are cooled with a liquid cold-plate, the passive ones (condensers, transformers, coils) with an air flow, in turn cooled by the cold-plate. By inserting the cooling system in an experimental tool where it is possible to control the cooling water, measurements are made of temperature in the significant points of the SMPS. The electric efficiency is also measured. The evaluation of the thermal performance of this cooling system is useful in order to limit its maximum operational temperature. The efficacy of the cooling system is demonstrated;the trends of efficiency and power dissipation are evidenced.