A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fau...A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.展开更多
For multiterminal or meshed Voltage Source Converter(VSC)High-voltage Direct Current(HVDC)systems,high speed protection against DC faults is essential,as power electronic components cannot withstand the rapidly increa...For multiterminal or meshed Voltage Source Converter(VSC)High-voltage Direct Current(HVDC)systems,high speed protection against DC faults is essential,as power electronic components cannot withstand the rapidly increasing fault currents which would otherwise result.Recently proposed DC fault detection methods were developed based on time domain simulations in EMT-type software,which requires considerable modeling and computational efforts and results in methods specifically designed for the HVDC grid under study.To simplify the initial design of DC fault detection methods,this paper proposes general guidelines based on fundamental theory and offers a reduced modeling approach.Furthermore,the impact of non-ideal measurements is investigated and a method to choose the filters that optimally discriminate these fault signals from noise,is proposed.The approach was evaluated in a case study on fault detection in a realistically dimensioned HVDC grid.The paper shows that the initial design of fast fault detection methods can be based on the relatively simple proposed guidelines and reduced models.The paper furthermore shows that a sufficiently high sampling frequency and a filter matched to the fault signal enable fault detection within hundreds of microseconds and discrimination of DC faults from transients not related to DC faults.展开更多
文摘A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.
基金This work was supported by a research grant of the Research Foundation-Flanders(FWO).
文摘For multiterminal or meshed Voltage Source Converter(VSC)High-voltage Direct Current(HVDC)systems,high speed protection against DC faults is essential,as power electronic components cannot withstand the rapidly increasing fault currents which would otherwise result.Recently proposed DC fault detection methods were developed based on time domain simulations in EMT-type software,which requires considerable modeling and computational efforts and results in methods specifically designed for the HVDC grid under study.To simplify the initial design of DC fault detection methods,this paper proposes general guidelines based on fundamental theory and offers a reduced modeling approach.Furthermore,the impact of non-ideal measurements is investigated and a method to choose the filters that optimally discriminate these fault signals from noise,is proposed.The approach was evaluated in a case study on fault detection in a realistically dimensioned HVDC grid.The paper shows that the initial design of fast fault detection methods can be based on the relatively simple proposed guidelines and reduced models.The paper furthermore shows that a sufficiently high sampling frequency and a filter matched to the fault signal enable fault detection within hundreds of microseconds and discrimination of DC faults from transients not related to DC faults.