The allocation of transmission cost provides important references and signals for system expansions and investments.This paper proposes a power tracing based equivalent bilateral exchange(PTEBX)method in which network...The allocation of transmission cost provides important references and signals for system expansions and investments.This paper proposes a power tracing based equivalent bilateral exchange(PTEBX)method in which network users are responsible for not only their induced power flows,but also power flows induced by whom they have equivalent bilateral exchanges with.The equivalent bilateral exchanges are recognized based on the power tracing.To evaluate the performance of different methods of allocating transmission cost,seven criteria are put forward that take into consideration characteristics of power systems.Theoretical analysis is then conducted to certify whether the methods satisfy the criteria.The results indicate that only the PTEBX method is able to satisfy all the seven criteria.Numerical examples based on the IEEE-30 system are presented to further demonstrate the applicability of the proposed method.展开更多
Two new methods were presented for power flow tracing(PFT).These two methods were compared and the results were discussed in detail.Both methods use the active and reactive power balance equations at each bus in order...Two new methods were presented for power flow tracing(PFT).These two methods were compared and the results were discussed in detail.Both methods use the active and reactive power balance equations at each bus in order to solve the tracing problem.The first method considers the proportional sharing assumption while the second one uses the circuit laws to find the relationship between power inflows and outflows through each line,generator and load connected to each bus of the network.Both methods are able to handle loop flow and loss issues in tracing problem.A formulation is also proposed to find the share of each unit in provision of each load.These methods are applied to find the producer and consumer's shares on the cost of transmission for each line in different case studies.As the results of these studies show,both methods can effectively solve the PFT problem.展开更多
In the electricity market, charging based on the traditional spot electricity price often results in the payment imbalance of electric network, and goes against the development of the power system. So, it is necessary...In the electricity market, charging based on the traditional spot electricity price often results in the payment imbalance of electric network, and goes against the development of the power system. So, it is necessary to modify the spot price. The key of the modification lies in how to calculate the fixed unit transmission cost of each node, that is how to allocate the fixed transmission cost to users.To solve this problem, we develop a power flow tracing algrithm to modify the spot price. We put forward a path searching method based on the graph theory after studying the fundamental principle of power flow tracing and apply the method to the downstream tracing algorithm and upstream tracing algorithm according to the proportional distribution principle. Furthermore, to improve the computational efficiency of the algorithm, we introduce the branch expunction method to optimize the node order. By using the result of power flow tracing to get fixed node transmission cost and introducing it to modify the spot price, we obtain the synthetical price.The application to a 5-bus system prove the algorithm feasible.展开更多
A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine re...A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine real power contribution from each generator to loads.Then,the results of MNE method and load flow information are utilized to determine suitable regression coefficients using MVR model to estimate the power transfer.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the MVR output compared to that of the MNE method.The error of the estimate of MVR method ranges from 0.001 4 to 0.007 9.Furthermore,when compared to MNE method,MVR method computes generator contribution to loads within 26.40 ms whereas the MNE method takes 360 ms for the calculation of same real power transfer allocation.Therefore,MVR method is more suitable for real time power transfer allocation.展开更多
The application of various artificial intelligent(AI) techniques,namely artificial neural network(ANN),adaptive neuro fuzzy interface system(ANFIS),genetic algorithm optimized least square support vector machine(GA-LS...The application of various artificial intelligent(AI) techniques,namely artificial neural network(ANN),adaptive neuro fuzzy interface system(ANFIS),genetic algorithm optimized least square support vector machine(GA-LSSVM) and multivariable regression(MVR) models was presented to identify the real power transfer between generators and loads.These AI techniques adopt supervised learning,which first uses modified nodal equation(MNE) method to determine real power contribution from each generator to loads.Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of various AI methods compared to that of the MNE method.展开更多
Enhancement of the electron fluxes in the inner radiation belt,which is induced by the powerful North West Cape(NWC) very-low-frequency(VLF) transmitter,have been observed and analyzed by several research groups.H...Enhancement of the electron fluxes in the inner radiation belt,which is induced by the powerful North West Cape(NWC) very-low-frequency(VLF) transmitter,have been observed and analyzed by several research groups.However,all of the previous publications have focused on NWC-induced > 100-keV electrons only,based on observations from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions(DEMETER) and the Geostationary Operational Environmental Satellite(GOES) satellites.Here,we present flux enhancements with 30-100-keV electrons related to NWC transmitter for the first time,which were observed by the GOES satellite at night.Similar to the 100-300-keV precipitated-electron behavior,the low energy 30-100-keV electron precipitation is primarily located east of the transmitter.However,the latter does not drift eastward to the same extent as the former,possibly because of the lower electron velocity.The 30-100-keV electrons are distributed in the L = 1.8-2.1 L-shell range,in contrast to the100-300-keV electrons which are at L= 1.67-1.9.This is consistent with the perspective that the energy of the VLF-waveinduced electron flux enhancement decreases with higher L-shell values.We expand upon the rationality of the simultaneous enhancement of the 30-100- and 100-300-keV electron fluxes through comparison with the cyclotron resonance theory for the quasi-linear wave-particle interaction.In addition,we interpret the asymmetry characteristics of NWC electric power distribution in north and south hemisphere by ray tracing model.Finally,we present considerable discussion and show that good agreement exists between the observation of satellites and theory.展开更多
Electron cyclotron resonance heating (ECRH) is one of the main auxiliary heating schemes for the HL-2A tokamak. Routinely, the ohmic heating can provide a heating power about 300-450 kW in this device ( estimated f...Electron cyclotron resonance heating (ECRH) is one of the main auxiliary heating schemes for the HL-2A tokamak. Routinely, the ohmic heating can provide a heating power about 300-450 kW in this device ( estimated from that the total toroidal current is about 300 kA while the totoidal voltage is 1-1.5 V). The total power for the ECRH now is 1 MW and in future 2 MW.展开更多
With the specific characteristics of low-carbon intensity and economy,wind power has been widely promoted around the world.Due to the variable and intermittent nature of wind power production,the system has to frequen...With the specific characteristics of low-carbon intensity and economy,wind power has been widely promoted around the world.Due to the variable and intermittent nature of wind power production,the system has to frequently redispatch generators in order to ensure the effective use of wind power whilst maintaining system security.In this way,traditional generation costs are increased and the social benefit of wind power decreases indirectly.In this paper,a new regulation strategy based on power flow tracing was proposed,taking advantage of a comfort-constrained demand response strategy to follow the fluctuations of wind farm output,with the remaining imbalance of active power compensated by traditional generators.Examples showed that compared with conventional regulation,demand response could reduce the gross operating costs of the system,and the rapid response could help maintaining system stability in case of contingency.The strategy in this paper also applies to other large-scale integration problems associated with renewable energy resources which display short-term production variability.展开更多
The calculation of the indirect carbon emis-sion is essential for power system policy making,carbon market development,and power grid planning.The em-bedded carbon emissions of the electricity system are commonly calc...The calculation of the indirect carbon emis-sion is essential for power system policy making,carbon market development,and power grid planning.The em-bedded carbon emissions of the electricity system are commonly calculated by carbon emission flow theory.However,the calculation procedure is time-consuming,especially for a country with 500-1000 thousand nodes,making it challenging to obtain nationwide carbon emis-sions intensity precisely.Additionally,the calculation procedure requires to gather all the grid data with high classified levels from different power grid companies,which can prevent data sharing and cooperation among different companies.This paper proposes a distributed computing algorithm for indirect carbon emission that can reduce the time consumption and provide privacy protection.The core idea is to utilize the sparsity of the nodes’flow matrix of the nationwide grid to partition the computing procedure into parallel sub-procedures exe-cuted in multiple terminals.The flow and structure data of the regional grid are transformed irreversibly for pri-vacy protection,when transmitted between terminals.A 1-master-and-N-slave layout is adopted to verify the method.This algorithm is suitable for large grid compa-nies with headquarter and branches in provinces,such as the State Grid Corporation of China.展开更多
This article examines vulnerabilities to power analysis attacks between software and hardware implementations of cryptographic algorithms. Representative platforms including an Atmel 89S8252 8-bit processor and a 0.25...This article examines vulnerabilities to power analysis attacks between software and hardware implementations of cryptographic algorithms. Representative platforms including an Atmel 89S8252 8-bit processor and a 0.25 um 1.8 v standard cell circuit are proposed to implement the advance encryption standard (AES). A simulation-based experimental environment is built to acquire power data, and single-bit differential power analysis (DPA), and multi-bit DPA and correlation power analysis (CPA) attacks are conducted on two implementations respectively. The experimental results show that the hardware implementation has less data-dependent power leakages to resist power attacks. Furthermore, an improved DPA approach is proposed. It adopts hamming distance of intermediate results as power model and arranges plaintext inputs to differentiate power traces to the maximal probability. Compared with the original power attacks, our improved DPA performs a successful attack on AES hardware implementations with acceptable power measurements and fewer computations.展开更多
基金supported by the Management Consulting Program of the State Grid Corporation of China under Grant SGTYHT/15-WT-218.
文摘The allocation of transmission cost provides important references and signals for system expansions and investments.This paper proposes a power tracing based equivalent bilateral exchange(PTEBX)method in which network users are responsible for not only their induced power flows,but also power flows induced by whom they have equivalent bilateral exchanges with.The equivalent bilateral exchanges are recognized based on the power tracing.To evaluate the performance of different methods of allocating transmission cost,seven criteria are put forward that take into consideration characteristics of power systems.Theoretical analysis is then conducted to certify whether the methods satisfy the criteria.The results indicate that only the PTEBX method is able to satisfy all the seven criteria.Numerical examples based on the IEEE-30 system are presented to further demonstrate the applicability of the proposed method.
文摘Two new methods were presented for power flow tracing(PFT).These two methods were compared and the results were discussed in detail.Both methods use the active and reactive power balance equations at each bus in order to solve the tracing problem.The first method considers the proportional sharing assumption while the second one uses the circuit laws to find the relationship between power inflows and outflows through each line,generator and load connected to each bus of the network.Both methods are able to handle loop flow and loss issues in tracing problem.A formulation is also proposed to find the share of each unit in provision of each load.These methods are applied to find the producer and consumer's shares on the cost of transmission for each line in different case studies.As the results of these studies show,both methods can effectively solve the PFT problem.
文摘In the electricity market, charging based on the traditional spot electricity price often results in the payment imbalance of electric network, and goes against the development of the power system. So, it is necessary to modify the spot price. The key of the modification lies in how to calculate the fixed unit transmission cost of each node, that is how to allocate the fixed transmission cost to users.To solve this problem, we develop a power flow tracing algrithm to modify the spot price. We put forward a path searching method based on the graph theory after studying the fundamental principle of power flow tracing and apply the method to the downstream tracing algorithm and upstream tracing algorithm according to the proportional distribution principle. Furthermore, to improve the computational efficiency of the algorithm, we introduce the branch expunction method to optimize the node order. By using the result of power flow tracing to get fixed node transmission cost and introducing it to modify the spot price, we obtain the synthetical price.The application to a 5-bus system prove the algorithm feasible.
文摘A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine real power contribution from each generator to loads.Then,the results of MNE method and load flow information are utilized to determine suitable regression coefficients using MVR model to estimate the power transfer.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the MVR output compared to that of the MNE method.The error of the estimate of MVR method ranges from 0.001 4 to 0.007 9.Furthermore,when compared to MNE method,MVR method computes generator contribution to loads within 26.40 ms whereas the MNE method takes 360 ms for the calculation of same real power transfer allocation.Therefore,MVR method is more suitable for real time power transfer allocation.
基金the Ministry of Higher Education,Malaysia (MOHE) for the financial funding of this projectUniversiti Kebangsaan Malaysia and Universiti Teknologi Malaysia for providing infrastructure and moral support for the research work
文摘The application of various artificial intelligent(AI) techniques,namely artificial neural network(ANN),adaptive neuro fuzzy interface system(ANFIS),genetic algorithm optimized least square support vector machine(GA-LSSVM) and multivariable regression(MVR) models was presented to identify the real power transfer between generators and loads.These AI techniques adopt supervised learning,which first uses modified nodal equation(MNE) method to determine real power contribution from each generator to loads.Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of various AI methods compared to that of the MNE method.
基金Supported by the China Seismo-Electromagnetic Satellite Mission Ground-Based Verification Project of the Administration of Science,Technology,and Industry for National Defense and Asia-Pacific Space Cooperation Organization Project(APSCO-SP/PM-EARTHQUAKE)
文摘Enhancement of the electron fluxes in the inner radiation belt,which is induced by the powerful North West Cape(NWC) very-low-frequency(VLF) transmitter,have been observed and analyzed by several research groups.However,all of the previous publications have focused on NWC-induced > 100-keV electrons only,based on observations from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions(DEMETER) and the Geostationary Operational Environmental Satellite(GOES) satellites.Here,we present flux enhancements with 30-100-keV electrons related to NWC transmitter for the first time,which were observed by the GOES satellite at night.Similar to the 100-300-keV precipitated-electron behavior,the low energy 30-100-keV electron precipitation is primarily located east of the transmitter.However,the latter does not drift eastward to the same extent as the former,possibly because of the lower electron velocity.The 30-100-keV electrons are distributed in the L = 1.8-2.1 L-shell range,in contrast to the100-300-keV electrons which are at L= 1.67-1.9.This is consistent with the perspective that the energy of the VLF-waveinduced electron flux enhancement decreases with higher L-shell values.We expand upon the rationality of the simultaneous enhancement of the 30-100- and 100-300-keV electron fluxes through comparison with the cyclotron resonance theory for the quasi-linear wave-particle interaction.In addition,we interpret the asymmetry characteristics of NWC electric power distribution in north and south hemisphere by ray tracing model.Finally,we present considerable discussion and show that good agreement exists between the observation of satellites and theory.
文摘Electron cyclotron resonance heating (ECRH) is one of the main auxiliary heating schemes for the HL-2A tokamak. Routinely, the ohmic heating can provide a heating power about 300-450 kW in this device ( estimated from that the total toroidal current is about 300 kA while the totoidal voltage is 1-1.5 V). The total power for the ECRH now is 1 MW and in future 2 MW.
基金supported by Special Fund of the National Basic Research Program of China ("973" Program),Grant Nos. 2009CB219701,2010CB234608)Tianjin Municipal Science and Technology Development Program of China (Grant No. 09JCZDJC25000)+1 种基金Research Fund for the Doctoral Program of Higher Education of China (Grant No.20090032110064)Pacific Institute for Climate Solutions (PICS)
文摘With the specific characteristics of low-carbon intensity and economy,wind power has been widely promoted around the world.Due to the variable and intermittent nature of wind power production,the system has to frequently redispatch generators in order to ensure the effective use of wind power whilst maintaining system security.In this way,traditional generation costs are increased and the social benefit of wind power decreases indirectly.In this paper,a new regulation strategy based on power flow tracing was proposed,taking advantage of a comfort-constrained demand response strategy to follow the fluctuations of wind farm output,with the remaining imbalance of active power compensated by traditional generators.Examples showed that compared with conventional regulation,demand response could reduce the gross operating costs of the system,and the rapid response could help maintaining system stability in case of contingency.The strategy in this paper also applies to other large-scale integration problems associated with renewable energy resources which display short-term production variability.
基金supported by the Science and Technol-ogy Project of State Grid Cooperation of China(No.5700-202290184A-1-1-ZN).
文摘The calculation of the indirect carbon emis-sion is essential for power system policy making,carbon market development,and power grid planning.The em-bedded carbon emissions of the electricity system are commonly calculated by carbon emission flow theory.However,the calculation procedure is time-consuming,especially for a country with 500-1000 thousand nodes,making it challenging to obtain nationwide carbon emis-sions intensity precisely.Additionally,the calculation procedure requires to gather all the grid data with high classified levels from different power grid companies,which can prevent data sharing and cooperation among different companies.This paper proposes a distributed computing algorithm for indirect carbon emission that can reduce the time consumption and provide privacy protection.The core idea is to utilize the sparsity of the nodes’flow matrix of the nationwide grid to partition the computing procedure into parallel sub-procedures exe-cuted in multiple terminals.The flow and structure data of the regional grid are transformed irreversibly for pri-vacy protection,when transmitted between terminals.A 1-master-and-N-slave layout is adopted to verify the method.This algorithm is suitable for large grid compa-nies with headquarter and branches in provinces,such as the State Grid Corporation of China.
基金the Hi-Tech Research and Development Program of China (2006AA01Z226)the Scientific Research Foundation of Huazhong University of Science and Technology (2006Z001B)
文摘This article examines vulnerabilities to power analysis attacks between software and hardware implementations of cryptographic algorithms. Representative platforms including an Atmel 89S8252 8-bit processor and a 0.25 um 1.8 v standard cell circuit are proposed to implement the advance encryption standard (AES). A simulation-based experimental environment is built to acquire power data, and single-bit differential power analysis (DPA), and multi-bit DPA and correlation power analysis (CPA) attacks are conducted on two implementations respectively. The experimental results show that the hardware implementation has less data-dependent power leakages to resist power attacks. Furthermore, an improved DPA approach is proposed. It adopts hamming distance of intermediate results as power model and arranges plaintext inputs to differentiate power traces to the maximal probability. Compared with the original power attacks, our improved DPA performs a successful attack on AES hardware implementations with acceptable power measurements and fewer computations.