期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Power Transformer Fault Diagnosis Using Fuzzy Reasoning Spiking Neural P Systems 被引量:1
1
作者 Yousif Yahya Ai Qian Adel Yahya 《Journal of Intelligent Learning Systems and Applications》 2016年第4期77-91,共15页
This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distr... This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer. 展开更多
关键词 Dissolved Gas Analysis fault Diagnosis Fuzzy Reasoning power transformer faults Spiking Neural P System
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部