Based on the collection of relevant literature and cases,the research and application status of on-line monitoring technology for electromagnetic environment of power transmission and transformation projects at home a...Based on the collection of relevant literature and cases,the research and application status of on-line monitoring technology for electromagnetic environment of power transmission and transformation projects at home and abroad were introduced.Moreover,the problems existing in the on-line monitoring of electromagnetic environment were expounded,and the development prospect was forecasted.展开更多
China needs to develop a strong national power grid which takes ultra-high-voltage (UHV) transmission systems as its core. The grid is expected to adopt 1000-kV-class AC and ± 800-kV DC transmission systems. In v...China needs to develop a strong national power grid which takes ultra-high-voltage (UHV) transmission systems as its core. The grid is expected to adopt 1000-kV-class AC and ± 800-kV DC transmission systems. In view of significant achievements in technological research and considerable progress in UHV manufacturing technology, China is capable of developing UHV systems. In order to promote the construction of UHV systems,China Electric Power Research Institute and other institutions have initiated first-phase research activities of UHV transmission technologies. The main contents involve research on UHV transmission technology and its economy,developing and manufacturing abilities on UHV equipment, prospective of UHV network frame and selection of demonstration projects, etc.展开更多
The risk evaluation of power transmission and transformation projects is a complex and comprehensive evaluation process influenced by many factors and involves many indicators.In order to solve the uncertainty and fuz...The risk evaluation of power transmission and transformation projects is a complex and comprehensive evaluation process influenced by many factors and involves many indicators.In order to solve the uncertainty and fuzziness problems in the process of the multilevel fuzzy risk evaluation of power transmission and transformation projects,this paper introduces the cloud theory,which is specialized in the study of uncertainty problems and constructs the multilevel fuzzy comprehensive risk-evaluation model of power transmission and transformation projects based on the improved multilevel fuzzy-thought weighting based on the cloud model.Finally,the risk of the Beijing 220-kV Tangyu power transmission and transformation project is evaluated and the feasibility of the evaluation model is verified.The results of the evaluation and the evaluation layer cloud model are combined with MATLAB simulation to show that the risk level of the project is between large risk and general risk.展开更多
The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid moderniz...The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid modernization.A fundamental question is then asked about the investment priority.Six basic characteristics are reviewed,leading to the composition of structured microgrids as the basic functional cell of a modern grid.One example of fractal radial structure and one fractal meshed structure are presented.The likely evolution path is then proposed together with basic technology sets.Specific foundation technologies are discussed in detail,including adiabatic power conversion,3MC technology,medium voltage conversion,distribution-level electronic power transformer and FACTs hardware integration,and back-to-back converters as a universal interconnect element.The rapidly emerging on-wire sensing technology is also discussed.It is pointed out that the distribution-level large electronic power transformer will provide a key component to enable hybrid ac/dc grid flow control and ancillary support for a flexible electronic transmission and distribution(eT&D)systems.展开更多
In view of the difficulty in predicting the cost data of power transmission and transformation projects at present,a method based on Pearson correlation coefficient-improved particle swarm optimization(IPSO)-extreme l...In view of the difficulty in predicting the cost data of power transmission and transformation projects at present,a method based on Pearson correlation coefficient-improved particle swarm optimization(IPSO)-extreme learning machine(ELM)is proposed.In this paper,the Pearson correlation coefficient is used to screen out the main influencing factors as the input-independent variables of the ELM algorithm and IPSO based on a ladder-structure coding method is used to optimize the number of hidden-layer nodes,input weights and bias values of the ELM.Therefore,the prediction model for the cost data of power transmission and transformation projects based on the Pearson correlation coefficient-IPSO-ELM algorithm is constructed.Through the analysis of calculation examples,it is proved that the prediction accuracy of the proposed method is higher than that of other algorithms,which verifies the effectiveness of the model.展开更多
基金Supported by the Open Project of Jiangsu Key Laboratory of Environmental Engineering(ZX2017005)
文摘Based on the collection of relevant literature and cases,the research and application status of on-line monitoring technology for electromagnetic environment of power transmission and transformation projects at home and abroad were introduced.Moreover,the problems existing in the on-line monitoring of electromagnetic environment were expounded,and the development prospect was forecasted.
文摘China needs to develop a strong national power grid which takes ultra-high-voltage (UHV) transmission systems as its core. The grid is expected to adopt 1000-kV-class AC and ± 800-kV DC transmission systems. In view of significant achievements in technological research and considerable progress in UHV manufacturing technology, China is capable of developing UHV systems. In order to promote the construction of UHV systems,China Electric Power Research Institute and other institutions have initiated first-phase research activities of UHV transmission technologies. The main contents involve research on UHV transmission technology and its economy,developing and manufacturing abilities on UHV equipment, prospective of UHV network frame and selection of demonstration projects, etc.
文摘The risk evaluation of power transmission and transformation projects is a complex and comprehensive evaluation process influenced by many factors and involves many indicators.In order to solve the uncertainty and fuzziness problems in the process of the multilevel fuzzy risk evaluation of power transmission and transformation projects,this paper introduces the cloud theory,which is specialized in the study of uncertainty problems and constructs the multilevel fuzzy comprehensive risk-evaluation model of power transmission and transformation projects based on the improved multilevel fuzzy-thought weighting based on the cloud model.Finally,the risk of the Beijing 220-kV Tangyu power transmission and transformation project is evaluated and the feasibility of the evaluation model is verified.The results of the evaluation and the evaluation layer cloud model are combined with MATLAB simulation to show that the risk level of the project is between large risk and general risk.
文摘The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid modernization.A fundamental question is then asked about the investment priority.Six basic characteristics are reviewed,leading to the composition of structured microgrids as the basic functional cell of a modern grid.One example of fractal radial structure and one fractal meshed structure are presented.The likely evolution path is then proposed together with basic technology sets.Specific foundation technologies are discussed in detail,including adiabatic power conversion,3MC technology,medium voltage conversion,distribution-level electronic power transformer and FACTs hardware integration,and back-to-back converters as a universal interconnect element.The rapidly emerging on-wire sensing technology is also discussed.It is pointed out that the distribution-level large electronic power transformer will provide a key component to enable hybrid ac/dc grid flow control and ancillary support for a flexible electronic transmission and distribution(eT&D)systems.
文摘In view of the difficulty in predicting the cost data of power transmission and transformation projects at present,a method based on Pearson correlation coefficient-improved particle swarm optimization(IPSO)-extreme learning machine(ELM)is proposed.In this paper,the Pearson correlation coefficient is used to screen out the main influencing factors as the input-independent variables of the ELM algorithm and IPSO based on a ladder-structure coding method is used to optimize the number of hidden-layer nodes,input weights and bias values of the ELM.Therefore,the prediction model for the cost data of power transmission and transformation projects based on the Pearson correlation coefficient-IPSO-ELM algorithm is constructed.Through the analysis of calculation examples,it is proved that the prediction accuracy of the proposed method is higher than that of other algorithms,which verifies the effectiveness of the model.