The Upper Lillooet River Hydroelectric Project (ULHP) is a run-of-river power generation scheme located near Pemberton, British Columbia, Canada, consisting of two separate hydroelectric facilities (HEFs) with a c...The Upper Lillooet River Hydroelectric Project (ULHP) is a run-of-river power generation scheme located near Pemberton, British Columbia, Canada, consisting of two separate hydroelectric facilities (HEFs) with a combined capacity of 106.7 MW. These HEFs are owned by the Upper Lillooet River Power Limited Partnership and the Boulder Creek Power Limited Partnership, and civil and tunnel construction was completed by CRT-ebc. The Upper Lillooet River HEF includes the excavation ofa 6 m wide by 5.5 m high and approximately 2500 m long tunnel along the Upper Lillooet River Valley. The project is in a moun- tainous area; severe restrictions imposed by weather conditions and the presence of sensitive wildlife species constrained the site operations in order to limit environmental impacts. The site is adjacent to the Mount Meager Volcanic Complex, the most recently active volcano in Western Canada. Tunneling conditions were very challenging, including a section through deposits associated with the most recent eruption from Mount Meager Volcanic Complex (-2360 years before the present). This tunnel section included welded breccia and unconsolidated deposits composed of loose pumice, organics (that represent an old forest floor), and till, before entering the underlying tonalite bedrock. The construction of this section of the tunnel required cover grouting, umbrella support, and excavation with a combination of road header, hydraulic hammer, and drilling-and-blasting method. This paper provides an overview of the project, a summary of the key design and construction schedule challenges, and a description of the successful excavation of the tunnel through deposits associated with the recent volcanic activity.展开更多
For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the ch...For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.展开更多
文摘The Upper Lillooet River Hydroelectric Project (ULHP) is a run-of-river power generation scheme located near Pemberton, British Columbia, Canada, consisting of two separate hydroelectric facilities (HEFs) with a combined capacity of 106.7 MW. These HEFs are owned by the Upper Lillooet River Power Limited Partnership and the Boulder Creek Power Limited Partnership, and civil and tunnel construction was completed by CRT-ebc. The Upper Lillooet River HEF includes the excavation ofa 6 m wide by 5.5 m high and approximately 2500 m long tunnel along the Upper Lillooet River Valley. The project is in a moun- tainous area; severe restrictions imposed by weather conditions and the presence of sensitive wildlife species constrained the site operations in order to limit environmental impacts. The site is adjacent to the Mount Meager Volcanic Complex, the most recently active volcano in Western Canada. Tunneling conditions were very challenging, including a section through deposits associated with the most recent eruption from Mount Meager Volcanic Complex (-2360 years before the present). This tunnel section included welded breccia and unconsolidated deposits composed of loose pumice, organics (that represent an old forest floor), and till, before entering the underlying tonalite bedrock. The construction of this section of the tunnel required cover grouting, umbrella support, and excavation with a combination of road header, hydraulic hammer, and drilling-and-blasting method. This paper provides an overview of the project, a summary of the key design and construction schedule challenges, and a description of the successful excavation of the tunnel through deposits associated with the recent volcanic activity.
基金financial supports provided by the National Natural Science Foundation of China (No.51274202)the Fundamental Research Funds for the Central Universities (No.2013RC11)+3 种基金the Science and Technology Achievements Transformation Project of Jiangsu Province (No.BA2012068)the Natural Science Foundation of Jiangsu Province (Nos.BK20130199 and BK20131124)Ceeusro Prospective Joint Research Project of Jiangsu Province (No.BY2014028-01)Great Cultivating Special Project at China University of Mining and Technology (No.2014ZDPY16)
文摘For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.