In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un...In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.展开更多
In this paper a novel method for reliability prediction and validation of nuclear power units in service is proposed. The equivalent availability factor is used to measure the reliability, and the equivalent availabil...In this paper a novel method for reliability prediction and validation of nuclear power units in service is proposed. The equivalent availability factor is used to measure the reliability, and the equivalent availability factor deducting planed outage hours from period hours and maintenance factor are used for the measurement of inherent reliability. By statistical analysis of historical reliability data, the statistical maintenance factor and the undetermined parameter in its numerical model can be determined. The numerical model based on the main- tenance factor predicts the equivalent availability factor deducting planed outage hours from period hours, and the planed outage factor can be obtained by using the planned maintenance days. Using these factors, the equivalent availability factor of nuclear power units in the following 3 years can be obtained. Besides, the equivalent availability factor can be predicted by using the historical statistics of planed outage factor and the predicted equivalent avail- ability factor deducting planed outage hours from period hours. The accuracy of the reliability prediction can be evaluated according to the comparison between the predicted and statistical equivalent availability factors. Furthermore, the reliability prediction method is validated using the nuclear power units in North American Electric Reliability Council (NERC) and China. It is found that the relative errors of the predicted equivalent availability factors for nuclear power units of NERC and China are in the range of-2.16% to 5.23% and -2.15% to 3.71%, respectively. The method proposed can effectively predict the reliability index in the following 3 years, thus providing effective reliability management and mainte- nance optimization methods for nuclear power units.展开更多
The urgent demand for portable electronics has promoted the development of high-efficienc)9 sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit ...The urgent demand for portable electronics has promoted the development of high-efficienc)9 sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit based on folded carbon (FC) paper for harvesting mechanical energy from human motion and power portable electronics. The present unit mainly consists of a triboelectric nanogenerator (FC-TENG) and a supercapacitor (FC-SC), both based on folded carbon paper, as energy harvester and storage device, respectively. This favorable geometric design provides the high Young's modulus carbon paper with excellent stretchability and enables the power unit to work even under severe deformations, such as bending, twisting, and rolling. In addition, the tensile strain can be maximized by tuning the folding angle of the triangle-folded carbon paper. Moreover, the waterproof property of the packaged device make it washable, protect it from human sweat, and enable it to work in harsh environments. Finally, the as-prepared self-charging power unit was tested by placing it on the human body to harvest mechanical energy from hand tapping, foot treading, and arm touching, successfully powering an electronic watch. This work demonstrates the impressive potential of stretchable self-charging power units, which will further promote the development of high Young's modulus materials for wearable/portable electronics.展开更多
With the development of new energy,the primary frequency control(PFC)is becoming more and more important and complicated.To improve the reliability of the PFC,an evaluation method of primary frequency control ability(...With the development of new energy,the primary frequency control(PFC)is becoming more and more important and complicated.To improve the reliability of the PFC,an evaluation method of primary frequency control ability(PFCA)was proposed.First,based on the coupling model of the coordinated control system(CCS)and digital electro-hydraulic control system(DEH),principle and control mode of the PFC were introduced in detail.The simulation results showed that the PFC of the CCS and DEH was the most effective control mode.Then,the analysis of the CCS model and variable condition revealed the internal relationship among main steam pressure,valve opening and power.In term of this,the radial basis function(RBF)neural network was established to estimate the PFCA.Because the simulation curves fit well with the actual curves,the accuracy of the coupling model was verified.On this basis,simulation data was produced by coupling model to verify the proposed evaluation method.The low predication error of main steam pressure,power and the PFCA indicated that the method was effective.In addition,the actual data obtained from historical operation data were used to estimate the PFCA accurately,which was the strongest evidence for this method.展开更多
The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation c...The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation conditions and boundaries such as load rate, coal quality, ambient temperature and humidity. Compared with the traditional optimization of specific operating parameters, the idea of the energy-consumption benchmark state was proposed. The equivalent specific fuel consumption(ESFC) analytics was introduced to determine the energy-consumption benchmark state, with the minimum ESFC under varying operation boundaries. Models for the energy-consumption benchmark state were established, and the endogenous additional specific consumption(ASFC) and exogenous ASFC were calculated. By comparing the benchmark state with the actual state, the energy-saving tempospacial effect can be quantified. As a case study, the energy consumption model of a 1000 MW ultra supercritical power unit was built. The results show that system energy consumption can be mainly reduced by improving the performance of turbine subsystem. This nearly doubles the resultant by improving the boiler system. The energy saving effect of each component increases with the decrease of load and has a greater influence under a lower load rate. The heat and mass transfer process takes priority in energy saving diagnosis of related components and processes. This makes great reference for the design and operation optimization of coal-fired power units.展开更多
The redundancy technology for the aircraft multi-channel DC electrical power supply system is studied. In this system, the key loads can obtain power from seven sources. The direct current bus power control unit (DC ...The redundancy technology for the aircraft multi-channel DC electrical power supply system is studied. In this system, the key loads can obtain power from seven sources. The direct current bus power control unit (DC BPCU) is put forward to manage the power supply system automatically. The redundancy innovation is also applied in both hardware and software of DC BPCU. Furthermore, redundancy fault diagnosis is discussed through the existing parts. Experiments and applications show that the proposed aircraft DC power supply system possesses many advantages of high reliability, high automation and so on.展开更多
The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi...The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.展开更多
A power management unit (PMU) chip supplying dual panel supply voltage, which has a low electro-magnetic interference (EMI) characteristic and is favorable for miniaturization, is designed. A two-phase charge pump...A power management unit (PMU) chip supplying dual panel supply voltage, which has a low electro-magnetic interference (EMI) characteristic and is favorable for miniaturization, is designed. A two-phase charge pump circuit using external pumping capacitor increases its pumping current and works out the charge-loss problem by using bulk-potential biasing circuit. A low-power start-up circuit is also proposed to reduce the power consumption of the band-gap reference voltage generator. And the ring oscillator used in the ELVSS power circuit is designed with logic devices by supplying the logic power supply to reduce the layout area. The PMU chip is designed with MagnaChip's 0.25 μ high-voltage process. The driving currents of ELVDD and ELVSS are more than 50 mA when a SPICE simulation is done.展开更多
A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tes...A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.展开更多
This serial research develops the unique ocean wave power station, which is composed of the floating type platform with a pair of the floats arranged at the interval of one wavelength and the counter-rotating type wav...This serial research develops the unique ocean wave power station, which is composed of the floating type platform with a pair of the floats arranged at the interval of one wavelength and the counter-rotating type wave power unit whose runners are submerged in the seawater at the middle position of the platform. Such profiles make the flow velocity through the runners two times faster than that of the traditional fixed/caisson type OWC (oscillating water column), that is, the runners may be able to get the dynamical energy eight times on the ideal. Besides, the runners counter-drive the inner and the outer armatures of the peculiar generator, respectively, and then the relative rotational speed is two times as fast as the speed of the single runner/armature. Such characteristics make the runner diameter large, namely the output higher, as you request, because the rotational moment of the power unit hardly act on the floating type platform. This paper, as the first step, discusses the platform behaviors at the normally oscillating wave. The platform behavior is affected by not only the length and the amplitude of the wave but also the relation between the weight of the platform and the buoyancy force of the floats.展开更多
The authors have invented a superior wind power unit, which is composed of tandem wind rotors and double rotational armature type generator without the traditional stator. This unit is called "intelligent wind power ...The authors have invented a superior wind power unit, which is composed of tandem wind rotors and double rotational armature type generator without the traditional stator. This unit is called "intelligent wind power unit". At upwind type unit, the large-sized front wind rotor and the small-sized rear wind rotor drive the inner and the outer rotational armatures respectively, in keeping the rotational torque counter-balance between both wind rotors/armatures. This paper discusses the acoustic noise emitted from the tandem wind rotors. As for tandem wind rotors, the tip vortex shedding from the front wind rotor may make a loud acoustic noise if the vortex attacks the rear wind rotor. Intelligent wind power unit, however, has no chance to increase the acoustic noise level by the tip vortex because the diameter of the front wind rotor is reasonably larger than the diameter of the rear wind rotor. The vorticity generated in the boundary layer on the blade can be observed obviously at wake flow and can be evaluated quantitatively at flow conditions measured by a hot-wire anemometer at a wind tunnel. The flow conditions have shown that the radial and axial components of vorticities contribute to emit the acoustic noise.展开更多
In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the lo...In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.展开更多
Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is propos...Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.展开更多
Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simpli...Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.展开更多
The paper expresses the view that China's essential way out for developing nuclear power lies in localization of manu facture, based on her technical level and capability in designing and manufacturing nuclear pow...The paper expresses the view that China's essential way out for developing nuclear power lies in localization of manu facture, based on her technical level and capability in designing and manufacturing nuclear power equipment. Moreover, the paper opines that domestically manufactured nuclear power equipment has a certain competitive potential with respect to quality and price, the crux lying in the neces sity of reforming the management system of nuclear power.展开更多
In order to satisfy operating requirements for constant core drilling technology in reverse circulation with hollow-through DTH,the power unit of G-3 engineering driller was ameliorated. The new one with dual channel ...In order to satisfy operating requirements for constant core drilling technology in reverse circulation with hollow-through DTH,the power unit of G-3 engineering driller was ameliorated. The new one with dual channel drive shaft, achieved the perfect assemble with transmission structure of the original power unit. It could interconvert according to need by using two sets of drive shafts with direct and reverse circulation. The repacked G-3 engineering driller carried on experiment in the field test in Luanchuan molybdenum mine of Henan, whose effect was very good.展开更多
Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant t...Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.展开更多
基金funded by the National Key R&D Program of China,Grant Number 2019YFB1505400.
文摘In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.
文摘In this paper a novel method for reliability prediction and validation of nuclear power units in service is proposed. The equivalent availability factor is used to measure the reliability, and the equivalent availability factor deducting planed outage hours from period hours and maintenance factor are used for the measurement of inherent reliability. By statistical analysis of historical reliability data, the statistical maintenance factor and the undetermined parameter in its numerical model can be determined. The numerical model based on the main- tenance factor predicts the equivalent availability factor deducting planed outage hours from period hours, and the planed outage factor can be obtained by using the planned maintenance days. Using these factors, the equivalent availability factor of nuclear power units in the following 3 years can be obtained. Besides, the equivalent availability factor can be predicted by using the historical statistics of planed outage factor and the predicted equivalent avail- ability factor deducting planed outage hours from period hours. The accuracy of the reliability prediction can be evaluated according to the comparison between the predicted and statistical equivalent availability factors. Furthermore, the reliability prediction method is validated using the nuclear power units in North American Electric Reliability Council (NERC) and China. It is found that the relative errors of the predicted equivalent availability factors for nuclear power units of NERC and China are in the range of-2.16% to 5.23% and -2.15% to 3.71%, respectively. The method proposed can effectively predict the reliability index in the following 3 years, thus providing effective reliability management and mainte- nance optimization methods for nuclear power units.
文摘The urgent demand for portable electronics has promoted the development of high-efficienc)9 sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit based on folded carbon (FC) paper for harvesting mechanical energy from human motion and power portable electronics. The present unit mainly consists of a triboelectric nanogenerator (FC-TENG) and a supercapacitor (FC-SC), both based on folded carbon paper, as energy harvester and storage device, respectively. This favorable geometric design provides the high Young's modulus carbon paper with excellent stretchability and enables the power unit to work even under severe deformations, such as bending, twisting, and rolling. In addition, the tensile strain can be maximized by tuning the folding angle of the triangle-folded carbon paper. Moreover, the waterproof property of the packaged device make it washable, protect it from human sweat, and enable it to work in harsh environments. Finally, the as-prepared self-charging power unit was tested by placing it on the human body to harvest mechanical energy from hand tapping, foot treading, and arm touching, successfully powering an electronic watch. This work demonstrates the impressive potential of stretchable self-charging power units, which will further promote the development of high Young's modulus materials for wearable/portable electronics.
基金supported by the Electric Power Research Institute of State Grid Corporation of China in Zhejiang province。
文摘With the development of new energy,the primary frequency control(PFC)is becoming more and more important and complicated.To improve the reliability of the PFC,an evaluation method of primary frequency control ability(PFCA)was proposed.First,based on the coupling model of the coordinated control system(CCS)and digital electro-hydraulic control system(DEH),principle and control mode of the PFC were introduced in detail.The simulation results showed that the PFC of the CCS and DEH was the most effective control mode.Then,the analysis of the CCS model and variable condition revealed the internal relationship among main steam pressure,valve opening and power.In term of this,the radial basis function(RBF)neural network was established to estimate the PFCA.Because the simulation curves fit well with the actual curves,the accuracy of the coupling model was verified.On this basis,simulation data was produced by coupling model to verify the proposed evaluation method.The low predication error of main steam pressure,power and the PFCA indicated that the method was effective.In addition,the actual data obtained from historical operation data were used to estimate the PFCA accurately,which was the strongest evidence for this method.
文摘The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation conditions and boundaries such as load rate, coal quality, ambient temperature and humidity. Compared with the traditional optimization of specific operating parameters, the idea of the energy-consumption benchmark state was proposed. The equivalent specific fuel consumption(ESFC) analytics was introduced to determine the energy-consumption benchmark state, with the minimum ESFC under varying operation boundaries. Models for the energy-consumption benchmark state were established, and the endogenous additional specific consumption(ASFC) and exogenous ASFC were calculated. By comparing the benchmark state with the actual state, the energy-saving tempospacial effect can be quantified. As a case study, the energy consumption model of a 1000 MW ultra supercritical power unit was built. The results show that system energy consumption can be mainly reduced by improving the performance of turbine subsystem. This nearly doubles the resultant by improving the boiler system. The energy saving effect of each component increases with the decrease of load and has a greater influence under a lower load rate. The heat and mass transfer process takes priority in energy saving diagnosis of related components and processes. This makes great reference for the design and operation optimization of coal-fired power units.
文摘The redundancy technology for the aircraft multi-channel DC electrical power supply system is studied. In this system, the key loads can obtain power from seven sources. The direct current bus power control unit (DC BPCU) is put forward to manage the power supply system automatically. The redundancy innovation is also applied in both hardware and software of DC BPCU. Furthermore, redundancy fault diagnosis is discussed through the existing parts. Experiments and applications show that the proposed aircraft DC power supply system possesses many advantages of high reliability, high automation and so on.
基金Supported by the National Natural Science Foundation of China(60974119)
文摘The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.
文摘A power management unit (PMU) chip supplying dual panel supply voltage, which has a low electro-magnetic interference (EMI) characteristic and is favorable for miniaturization, is designed. A two-phase charge pump circuit using external pumping capacitor increases its pumping current and works out the charge-loss problem by using bulk-potential biasing circuit. A low-power start-up circuit is also proposed to reduce the power consumption of the band-gap reference voltage generator. And the ring oscillator used in the ELVSS power circuit is designed with logic devices by supplying the logic power supply to reduce the layout area. The PMU chip is designed with MagnaChip's 0.25 μ high-voltage process. The driving currents of ELVDD and ELVSS are more than 50 mA when a SPICE simulation is done.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant Nos. 2006AA09Z226 and 2012AA091104)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University (Grant No. CHD2011JC151)
文摘A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.
文摘This serial research develops the unique ocean wave power station, which is composed of the floating type platform with a pair of the floats arranged at the interval of one wavelength and the counter-rotating type wave power unit whose runners are submerged in the seawater at the middle position of the platform. Such profiles make the flow velocity through the runners two times faster than that of the traditional fixed/caisson type OWC (oscillating water column), that is, the runners may be able to get the dynamical energy eight times on the ideal. Besides, the runners counter-drive the inner and the outer armatures of the peculiar generator, respectively, and then the relative rotational speed is two times as fast as the speed of the single runner/armature. Such characteristics make the runner diameter large, namely the output higher, as you request, because the rotational moment of the power unit hardly act on the floating type platform. This paper, as the first step, discusses the platform behaviors at the normally oscillating wave. The platform behavior is affected by not only the length and the amplitude of the wave but also the relation between the weight of the platform and the buoyancy force of the floats.
文摘The authors have invented a superior wind power unit, which is composed of tandem wind rotors and double rotational armature type generator without the traditional stator. This unit is called "intelligent wind power unit". At upwind type unit, the large-sized front wind rotor and the small-sized rear wind rotor drive the inner and the outer rotational armatures respectively, in keeping the rotational torque counter-balance between both wind rotors/armatures. This paper discusses the acoustic noise emitted from the tandem wind rotors. As for tandem wind rotors, the tip vortex shedding from the front wind rotor may make a loud acoustic noise if the vortex attacks the rear wind rotor. Intelligent wind power unit, however, has no chance to increase the acoustic noise level by the tip vortex because the diameter of the front wind rotor is reasonably larger than the diameter of the rear wind rotor. The vorticity generated in the boundary layer on the blade can be observed obviously at wake flow and can be evaluated quantitatively at flow conditions measured by a hot-wire anemometer at a wind tunnel. The flow conditions have shown that the radial and axial components of vorticities contribute to emit the acoustic noise.
文摘In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.
文摘Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.
文摘Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.
文摘The paper expresses the view that China's essential way out for developing nuclear power lies in localization of manu facture, based on her technical level and capability in designing and manufacturing nuclear power equipment. Moreover, the paper opines that domestically manufactured nuclear power equipment has a certain competitive potential with respect to quality and price, the crux lying in the neces sity of reforming the management system of nuclear power.
基金Project of Science & Technology Development Guidance of Jilin Province (No.200405033)
文摘In order to satisfy operating requirements for constant core drilling technology in reverse circulation with hollow-through DTH,the power unit of G-3 engineering driller was ameliorated. The new one with dual channel drive shaft, achieved the perfect assemble with transmission structure of the original power unit. It could interconvert according to need by using two sets of drive shafts with direct and reverse circulation. The repacked G-3 engineering driller carried on experiment in the field test in Luanchuan molybdenum mine of Henan, whose effect was very good.
文摘Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.