期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Throughput Maximization for Multi-UAV Enabled Millimeter Wave WPCN: Joint Time and Power Allocation 被引量:8
1
作者 Jiansong Miao Pengjie Wang +1 位作者 Qian Zhang Yue Wang 《China Communications》 SCIE CSCD 2020年第10期142-156,共15页
In this paper,we investigate the effective deployment of millimeter wave(mmWave)in unmanned aerial vehicle(UAV)-enabled wireless powered communication network(WPCN).In particular,a novel framework for optimizing the p... In this paper,we investigate the effective deployment of millimeter wave(mmWave)in unmanned aerial vehicle(UAV)-enabled wireless powered communication network(WPCN).In particular,a novel framework for optimizing the performance of such UAV-enabled WPCN in terms of system throughput is proposed.In the considered model,multiple UAVs monitor in the air along the scheduled flight trajectory and transmit monitoring data to micro base stations(mBSs)with the harvested energy via mmWave.In this case,we propose an algorithm for jointly optimizing transmit power and energy transfer time.To solve the non-convex optimization problem with tightly coupled variables,we decouple the problem into more tractable subproblems.By leveraging successive convex approximation(SCA)and block coordinate descent techniques,the optimal solution is obtained by designing a two-stage joint iteration optimization algorithm.Simulation results show that the proposed algorithm with joint transmit power and energy transfer time optimization achieves significant performance gains over Q-learning method and other benchmark schemes. 展开更多
关键词 millimeter-wave(mmWave) unmanned aerial vehicle(UAV) wireless powered communication network energy supply joint optimization
下载PDF
Sum-Rate Maximization in Active RIS-Assisted Multi-Antenna WPCN
2
作者 Jiang Jie Lyu Bin +1 位作者 Chen Pengcheng Yang Zhen 《China Communications》 SCIE CSCD 2024年第6期23-39,共17页
In this paper,we propose an active reconfigurable intelligent surface(RIS)enabled hybrid relaying scheme for a multi-antenna wireless powered communication network(WPCN),where the active RIS is employed to assist both... In this paper,we propose an active reconfigurable intelligent surface(RIS)enabled hybrid relaying scheme for a multi-antenna wireless powered communication network(WPCN),where the active RIS is employed to assist both wireless energy transfer(WET)from the power station(PS)to energyconstrained users and wireless information transmission(WIT)from users to the receiving station(RS).For further performance enhancement,we propose to employ both transmit beamforming at the PS and receive beamforming at the RS.We formulate a sumrate maximization problem by jointly optimizing the RIS phase shifts and amplitude reflection coefficients for both the WET and the WIT,transmit and receive beamforming vectors,and network resource allocation.To solve this non-convex problem,we propose an efficient alternating optimization algorithm with the linear minimum mean squared error criterion,semidefinite relaxation(SDR)and successive convex approximation techniques.Specifically,the tightness of applying the SDR is proved.Simulation results demonstrate that our proposed scheme with 10 reflecting elements(REs)and 4 antennas can achieve 17.78%and 415.48%performance gains compared to the single-antenna scheme with 10 REs and passive RIS scheme with 100 REs,respectively. 展开更多
关键词 active reconfigurable intelligent surface BEAMFORMING sum-rate maximization wireless powered communication network
下载PDF
Maximum throughput design of wireless powered communication network with IRS-NOMA based on user clustering 被引量:1
3
作者 Guo Hui Zhao Xuehui 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第3期55-64,共10页
A wireless powered communication network(WPCN)assisted by intelligent reflecting surface(IRS)is proposed in this paper,which can transfer information by non-orthogonal multiple access(NOMA)technology.In the system,in ... A wireless powered communication network(WPCN)assisted by intelligent reflecting surface(IRS)is proposed in this paper,which can transfer information by non-orthogonal multiple access(NOMA)technology.In the system,in order to ensure that the hybrid access point(H-AP)can correctly decode user information via successive interference cancellation(SIC)technology,the information transmit power of user needs to satisfy a certain threshold,so as to meet the corresponding SIC constraints.Therefore,when the number of users who transfer information simultaneously increases,the system performance will be greatly restricted.To minimize the influence of SIC constraints on system performance,users are firstly clustered,and then each cluster collects energy from H-AP and finally,users transfer information based on NOMA with the assistance of IRS.Specifically,this paper aims to maximize the sum throughput of the system by jointly optimizing the beamforming of IRS and resource allocation of the system.The semi-definite relaxation(SDR)algorithm is employed to alternately optimize the beamforming of IRS in each time slot,and the joint optimization problem about user’s transmit power and time is transformed into two optimal time allocation sub-problems.The numerical results show that the proposed optimization scheme can effectively improve the sum throughput of the system.In addition,the results in the paper further reveals the positive impact of IRS on improving the sum throughput of the system. 展开更多
关键词 wireless powered communication network(WPCN) intelligent reflecting surface(IRS) user clustering
原文传递
Efficient Approach for Resource Allocation in WPCN Using Hybrid Optimization
4
作者 Richu Mary Thomas Malarvizhi Subramani 《Computers, Materials & Continua》 SCIE EI 2022年第7期1275-1291,共17页
The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blo... The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blooming RF technology provides energy renewal of wireless devices with the quality of service(QoS).In addition,it does not require any unnecessary alterations on the transmission hardware side.A hybridized global optimization technique uniting Global best and Local best(GL)based particle swarm optimization(PSO)and ant colony optimization(ACO)is proposed in this paper to optimally allocate resources in wireless powered communication networks(WPCN)through coordinated operation of communication groups,in which the wireless energy transfer and information sharing take place concomitantly by the aid of a cooperative relay positioned in between the communicating groups.The designed algorithm assists in minimizing power consumption and maximizes the weighted sum rate at the end-user side.Thus the principal target of the system is coordinated optimization of energy beamforming along with time and energy allocation to reduce the total energy consumed combined with assured information rates of the communication groups.Numerical outputs are presented to manifest the proposed system’s performance to verify the analytical results via simulations. 展开更多
关键词 wireless powered communication networks cooperative communication RELAY hybrid optimization technique ant colony optimization particle swarm optimization
下载PDF
Maximum throughput design for IRS aided WPCN system based on NOMA
5
作者 Guo Hui Zhao Xuehui 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第1期93-101,共9页
This paper considers a wireless powered communication network(WPC network, WPCN) based on non-orthogonal multiple access(NOMA) technology aided by intelligent reflective surfaces(IRS). WPCN mainly focuses on downlink ... This paper considers a wireless powered communication network(WPC network, WPCN) based on non-orthogonal multiple access(NOMA) technology aided by intelligent reflective surfaces(IRS). WPCN mainly focuses on downlink energy transfer(ET) and uplink information transmission(IT). At the ET phase, a dedicated multi-antenna power station(PS) is equipped to supply power to users with the assistance of IRS, and at the IT phase, the IRS adjusts the phase to assist the user in applying NOMA technology to transmit information to the base station(BS), thus minimizing the impact of dynamic IRS on the system. Based on the above settings, the maximization of sum-throughput of the system under this working mode is studied. Due to the non-convexity of maximization problem of the sum-throughput of this system, block coordinate descent(BCD) technology is applied for alternative optimization of each system block by semidefinite relaxation(SDR) and particle swarm optimization(PSO) respectively. The numerical results show that compared with baseline scheme, the proposed optimization scheme can provide greater sum-throughput of the system. 展开更多
关键词 wireless powered communication network intelligent reflecting surface non-orthogonal multiple access
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部