In this paper,we investigate the effective deployment of millimeter wave(mmWave)in unmanned aerial vehicle(UAV)-enabled wireless powered communication network(WPCN).In particular,a novel framework for optimizing the p...In this paper,we investigate the effective deployment of millimeter wave(mmWave)in unmanned aerial vehicle(UAV)-enabled wireless powered communication network(WPCN).In particular,a novel framework for optimizing the performance of such UAV-enabled WPCN in terms of system throughput is proposed.In the considered model,multiple UAVs monitor in the air along the scheduled flight trajectory and transmit monitoring data to micro base stations(mBSs)with the harvested energy via mmWave.In this case,we propose an algorithm for jointly optimizing transmit power and energy transfer time.To solve the non-convex optimization problem with tightly coupled variables,we decouple the problem into more tractable subproblems.By leveraging successive convex approximation(SCA)and block coordinate descent techniques,the optimal solution is obtained by designing a two-stage joint iteration optimization algorithm.Simulation results show that the proposed algorithm with joint transmit power and energy transfer time optimization achieves significant performance gains over Q-learning method and other benchmark schemes.展开更多
In this paper,we propose an active reconfigurable intelligent surface(RIS)enabled hybrid relaying scheme for a multi-antenna wireless powered communication network(WPCN),where the active RIS is employed to assist both...In this paper,we propose an active reconfigurable intelligent surface(RIS)enabled hybrid relaying scheme for a multi-antenna wireless powered communication network(WPCN),where the active RIS is employed to assist both wireless energy transfer(WET)from the power station(PS)to energyconstrained users and wireless information transmission(WIT)from users to the receiving station(RS).For further performance enhancement,we propose to employ both transmit beamforming at the PS and receive beamforming at the RS.We formulate a sumrate maximization problem by jointly optimizing the RIS phase shifts and amplitude reflection coefficients for both the WET and the WIT,transmit and receive beamforming vectors,and network resource allocation.To solve this non-convex problem,we propose an efficient alternating optimization algorithm with the linear minimum mean squared error criterion,semidefinite relaxation(SDR)and successive convex approximation techniques.Specifically,the tightness of applying the SDR is proved.Simulation results demonstrate that our proposed scheme with 10 reflecting elements(REs)and 4 antennas can achieve 17.78%and 415.48%performance gains compared to the single-antenna scheme with 10 REs and passive RIS scheme with 100 REs,respectively.展开更多
A wireless powered communication network(WPCN)assisted by intelligent reflecting surface(IRS)is proposed in this paper,which can transfer information by non-orthogonal multiple access(NOMA)technology.In the system,in ...A wireless powered communication network(WPCN)assisted by intelligent reflecting surface(IRS)is proposed in this paper,which can transfer information by non-orthogonal multiple access(NOMA)technology.In the system,in order to ensure that the hybrid access point(H-AP)can correctly decode user information via successive interference cancellation(SIC)technology,the information transmit power of user needs to satisfy a certain threshold,so as to meet the corresponding SIC constraints.Therefore,when the number of users who transfer information simultaneously increases,the system performance will be greatly restricted.To minimize the influence of SIC constraints on system performance,users are firstly clustered,and then each cluster collects energy from H-AP and finally,users transfer information based on NOMA with the assistance of IRS.Specifically,this paper aims to maximize the sum throughput of the system by jointly optimizing the beamforming of IRS and resource allocation of the system.The semi-definite relaxation(SDR)algorithm is employed to alternately optimize the beamforming of IRS in each time slot,and the joint optimization problem about user’s transmit power and time is transformed into two optimal time allocation sub-problems.The numerical results show that the proposed optimization scheme can effectively improve the sum throughput of the system.In addition,the results in the paper further reveals the positive impact of IRS on improving the sum throughput of the system.展开更多
The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blo...The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blooming RF technology provides energy renewal of wireless devices with the quality of service(QoS).In addition,it does not require any unnecessary alterations on the transmission hardware side.A hybridized global optimization technique uniting Global best and Local best(GL)based particle swarm optimization(PSO)and ant colony optimization(ACO)is proposed in this paper to optimally allocate resources in wireless powered communication networks(WPCN)through coordinated operation of communication groups,in which the wireless energy transfer and information sharing take place concomitantly by the aid of a cooperative relay positioned in between the communicating groups.The designed algorithm assists in minimizing power consumption and maximizes the weighted sum rate at the end-user side.Thus the principal target of the system is coordinated optimization of energy beamforming along with time and energy allocation to reduce the total energy consumed combined with assured information rates of the communication groups.Numerical outputs are presented to manifest the proposed system’s performance to verify the analytical results via simulations.展开更多
This paper considers a wireless powered communication network(WPC network, WPCN) based on non-orthogonal multiple access(NOMA) technology aided by intelligent reflective surfaces(IRS). WPCN mainly focuses on downlink ...This paper considers a wireless powered communication network(WPC network, WPCN) based on non-orthogonal multiple access(NOMA) technology aided by intelligent reflective surfaces(IRS). WPCN mainly focuses on downlink energy transfer(ET) and uplink information transmission(IT). At the ET phase, a dedicated multi-antenna power station(PS) is equipped to supply power to users with the assistance of IRS, and at the IT phase, the IRS adjusts the phase to assist the user in applying NOMA technology to transmit information to the base station(BS), thus minimizing the impact of dynamic IRS on the system. Based on the above settings, the maximization of sum-throughput of the system under this working mode is studied. Due to the non-convexity of maximization problem of the sum-throughput of this system, block coordinate descent(BCD) technology is applied for alternative optimization of each system block by semidefinite relaxation(SDR) and particle swarm optimization(PSO) respectively. The numerical results show that compared with baseline scheme, the proposed optimization scheme can provide greater sum-throughput of the system.展开更多
文摘In this paper,we investigate the effective deployment of millimeter wave(mmWave)in unmanned aerial vehicle(UAV)-enabled wireless powered communication network(WPCN).In particular,a novel framework for optimizing the performance of such UAV-enabled WPCN in terms of system throughput is proposed.In the considered model,multiple UAVs monitor in the air along the scheduled flight trajectory and transmit monitoring data to micro base stations(mBSs)with the harvested energy via mmWave.In this case,we propose an algorithm for jointly optimizing transmit power and energy transfer time.To solve the non-convex optimization problem with tightly coupled variables,we decouple the problem into more tractable subproblems.By leveraging successive convex approximation(SCA)and block coordinate descent techniques,the optimal solution is obtained by designing a two-stage joint iteration optimization algorithm.Simulation results show that the proposed algorithm with joint transmit power and energy transfer time optimization achieves significant performance gains over Q-learning method and other benchmark schemes.
基金supported in part by the National Natural Science Foundation of China (No.62071242 and No.61901229)in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22 0967)in part by the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology (No.NJUZDS2022-008)
文摘In this paper,we propose an active reconfigurable intelligent surface(RIS)enabled hybrid relaying scheme for a multi-antenna wireless powered communication network(WPCN),where the active RIS is employed to assist both wireless energy transfer(WET)from the power station(PS)to energyconstrained users and wireless information transmission(WIT)from users to the receiving station(RS).For further performance enhancement,we propose to employ both transmit beamforming at the PS and receive beamforming at the RS.We formulate a sumrate maximization problem by jointly optimizing the RIS phase shifts and amplitude reflection coefficients for both the WET and the WIT,transmit and receive beamforming vectors,and network resource allocation.To solve this non-convex problem,we propose an efficient alternating optimization algorithm with the linear minimum mean squared error criterion,semidefinite relaxation(SDR)and successive convex approximation techniques.Specifically,the tightness of applying the SDR is proved.Simulation results demonstrate that our proposed scheme with 10 reflecting elements(REs)and 4 antennas can achieve 17.78%and 415.48%performance gains compared to the single-antenna scheme with 10 REs and passive RIS scheme with 100 REs,respectively.
基金supported by the Key Scientific and Technological Projects in Henan Province(202102310560)。
文摘A wireless powered communication network(WPCN)assisted by intelligent reflecting surface(IRS)is proposed in this paper,which can transfer information by non-orthogonal multiple access(NOMA)technology.In the system,in order to ensure that the hybrid access point(H-AP)can correctly decode user information via successive interference cancellation(SIC)technology,the information transmit power of user needs to satisfy a certain threshold,so as to meet the corresponding SIC constraints.Therefore,when the number of users who transfer information simultaneously increases,the system performance will be greatly restricted.To minimize the influence of SIC constraints on system performance,users are firstly clustered,and then each cluster collects energy from H-AP and finally,users transfer information based on NOMA with the assistance of IRS.Specifically,this paper aims to maximize the sum throughput of the system by jointly optimizing the beamforming of IRS and resource allocation of the system.The semi-definite relaxation(SDR)algorithm is employed to alternately optimize the beamforming of IRS in each time slot,and the joint optimization problem about user’s transmit power and time is transformed into two optimal time allocation sub-problems.The numerical results show that the proposed optimization scheme can effectively improve the sum throughput of the system.In addition,the results in the paper further reveals the positive impact of IRS on improving the sum throughput of the system.
文摘The recent aggrandizement of radio frequency(RF)signals in wireless power transmission combined with energy harvesting methods have led to the replacement of traditional battery-powered wireless networks since the blooming RF technology provides energy renewal of wireless devices with the quality of service(QoS).In addition,it does not require any unnecessary alterations on the transmission hardware side.A hybridized global optimization technique uniting Global best and Local best(GL)based particle swarm optimization(PSO)and ant colony optimization(ACO)is proposed in this paper to optimally allocate resources in wireless powered communication networks(WPCN)through coordinated operation of communication groups,in which the wireless energy transfer and information sharing take place concomitantly by the aid of a cooperative relay positioned in between the communicating groups.The designed algorithm assists in minimizing power consumption and maximizes the weighted sum rate at the end-user side.Thus the principal target of the system is coordinated optimization of energy beamforming along with time and energy allocation to reduce the total energy consumed combined with assured information rates of the communication groups.Numerical outputs are presented to manifest the proposed system’s performance to verify the analytical results via simulations.
基金supported by the Key Scientific and Technological Projects in Henan Province (202102310560)the Basic Scientific Research Operating Expenses of Henan Polytechnic University (NSFRF180309)。
文摘This paper considers a wireless powered communication network(WPC network, WPCN) based on non-orthogonal multiple access(NOMA) technology aided by intelligent reflective surfaces(IRS). WPCN mainly focuses on downlink energy transfer(ET) and uplink information transmission(IT). At the ET phase, a dedicated multi-antenna power station(PS) is equipped to supply power to users with the assistance of IRS, and at the IT phase, the IRS adjusts the phase to assist the user in applying NOMA technology to transmit information to the base station(BS), thus minimizing the impact of dynamic IRS on the system. Based on the above settings, the maximization of sum-throughput of the system under this working mode is studied. Due to the non-convexity of maximization problem of the sum-throughput of this system, block coordinate descent(BCD) technology is applied for alternative optimization of each system block by semidefinite relaxation(SDR) and particle swarm optimization(PSO) respectively. The numerical results show that compared with baseline scheme, the proposed optimization scheme can provide greater sum-throughput of the system.