Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has...Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has also increased as more devices are being connected to the network. To understand the physical laws governing the operation of the network, techniques such as optimal power flow (OPF), Economic dispatch (ED) and Security constrained optimal power flow (SCOPF) were developed. These techniques have been used extensively in network operation, planning and so on. However, an in-depth presentation showcasing the merits and demerits of these techniques is still lacking in the literature. Hence, this paper intends to fill this gap. In this paper, Economic dispatch, optimal power flow and security-constrained optimal power flow are applied to a 3-bus test system using a linear programming approach. The results of the ED, OPF and SC-OPF are compared and presented.展开更多
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in...In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort.展开更多
In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling met...In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE.展开更多
In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division m...In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.展开更多
To make full use of expanded maneuverability and increased range,adaptive constrained on-board guidance technology is the key capability for a glide vehicle with a double-pulse rocket engine,especially under the requi...To make full use of expanded maneuverability and increased range,adaptive constrained on-board guidance technology is the key capability for a glide vehicle with a double-pulse rocket engine,especially under the requirements of desired target changing and on-line reconfigurable control and guidance.Based on the rapid footprint analysis,whether the new target is within the current footprint area is firstly judged.If not,the rocket engine ignites by the logic obtained from the analysis of optimal flight range by the method of hp-adaptive Gauss pseudospectral method(hp-GPM).Then,an on-board trajectory generation method based on powered quasi-equilibrium glide condition(QEGC)and linear quadratic regulator(LQR)method is used to guide the vehicle to the new target.The effectiveness of the guidance method consisted of powered on-board trajectory generation,LQR trajectory tracking,footprint calculation,and ignition time determination is indicated by some simulation examples.展开更多
A Cognitive radio communication link is possible to be interrupted easily when its physical channel suffers severe fading. Relay technology is an effective way to mitigate the fading effect of wireless channels in a n...A Cognitive radio communication link is possible to be interrupted easily when its physical channel suffers severe fading. Relay technology is an effective way to mitigate the fading effect of wireless channels in a network. Based on the highest achievable rate of the relay channels, this paper considers a cognitive radio relay network where the secondary transmitter communicates with the receiver through the best relay node under the peak power constraint of a primary receiver. Intuitively, the secondary transmission can benefit from an intermediate relay node chosen from N possible nodes. To quantify this benefit, outage probability of cognitive radio relay networks is derived and also the closed-form expressions for outage capacity and ergodic capacity of cognitive radio relay networks are obtained in Rayleigh fading channels. Numerical simulation results are provided to show that the outage capacity and ergodic capacity benefit tremendously by properly increasing the number of relaying nodes.展开更多
Intensive in-depth development of resources, centralized purchasing and gradually expand under the category of environment, this paper studies how to use information technology tools to construction quality supervisio...Intensive in-depth development of resources, centralized purchasing and gradually expand under the category of environment, this paper studies how to use information technology tools to construction quality supervision and management system that focuses on the quality of supervision and project management, quality control process management, quality monitoring statistics report management, platform management-related content in four areas. Through the construction quality supervision and management system, to better enhance the quality of electric power enterprise management level, to ensure that the material quality, quantity of time and supplies. strengthening quality supervision and management can not only effectively reduce material procurement costs, but also enhance the competitiveness of enterprises.展开更多
Power is the nucleus of social and political life. Effective restraint on and supervision over the operation of power is the fundamental way of preventing corruption of power, which at the same time constitutes an imp...Power is the nucleus of social and political life. Effective restraint on and supervision over the operation of power is the fundamental way of preventing corruption of power, which at the same time constitutes an important indication to democracy and its development in a given country. Looking forward to attaining the strategic goal of building a society of relative prosperity in all aspects, the Sixteenth National Congress of the Communist Party of China called for "strengthening the restraint of and supervision over power to ensure that power given by the people is truly used to promote the interests of the people." The call specifies, in explicit language, the target of institutionalizing socialist democracy characterized by standardized operations in accordance with legal procedures.展开更多
Power图是带权重的Voronoi图,对Power图施加容量限制与质心限制,即可得到基于质心的容量限制Power图(Centroidal Capacity Constrained Power Diagram,CCCPD)。为解决现有CCCPD生成算法交替优化权重和站点位置带来的相互干扰、收敛减慢...Power图是带权重的Voronoi图,对Power图施加容量限制与质心限制,即可得到基于质心的容量限制Power图(Centroidal Capacity Constrained Power Diagram,CCCPD)。为解决现有CCCPD生成算法交替优化权重和站点位置带来的相互干扰、收敛减慢问题,提出对所有变量进行一体化优化的生成算法,采用多目标优化策略,直接优化质心限制和容量限制形成的混合能量。结果表明:所提算法的生成性能比传统方法提高40%。展开更多
The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi...The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.展开更多
Power control problems for wireless communication networks are investigated in direct-sequence codedivision multiple-access (DS/CDMA) channels. It is shown that the underlying problem can be formulated as a constrai...Power control problems for wireless communication networks are investigated in direct-sequence codedivision multiple-access (DS/CDMA) channels. It is shown that the underlying problem can be formulated as a constrained optimization problem in a stochastic framework. For effective solutions to this optimization problem in real time, recursive algorithms of stochastic approximation type are developed that can solve the problem with unknown system components. Under broad conditions, convergence of the algorithms is established by using weak convergence methods.展开更多
The electric power market is changing-it has passed from a regulated market, where the government of each country had the control of prices, to a deregulated market economy. Each company competes in order to get more ...The electric power market is changing-it has passed from a regulated market, where the government of each country had the control of prices, to a deregulated market economy. Each company competes in order to get more cli.e.nts and maximize its profits. This market is represented by a Stackelberg game with two firms, leader and follower, and the leader anticipates the reaction of the follower. The problem is formulated as a Mathematical Program with Complementarity Constraints (MPCC). It is shown that the constraint qualifications usually assumed to prove convergence of standard algorithms fail to hold for MPCC. To circumvent this, a reformulation for a nonlinear problem (NLP) is proposed. Numerical tests using the NEOS server platform are presented.展开更多
Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we p...Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.展开更多
After the digital revolution, the power system security becomes an important issue and it urges the power producers to maintain a well secured system in order to supply a quality power to the end users. This paper pre...After the digital revolution, the power system security becomes an important issue and it urges the power producers to maintain a well secured system in order to supply a quality power to the end users. This paper presents an integrated Corrective Security Constrained Optimal Power Flow (CSCOPF) with Flexible Transmission Line Impedance (FTLI) to enhance the power system security. The corrective approach of SCOPF is chosen, because it allows the corrective equipment to bring back the system to a stable operating point and hence, it offers high flexibility and better economics. The concept of FTLI arises from the ability of FACTS devices such as Thyristor Controlled Series Capacitor (TCSC), which can vary the line reactance to a certain extent. An enhanced security can be achieved by incorporating FTLI into the CSCOPF problem, since the power flow in a system is highly dependent on the line reactance. FTLI based CSCOPF can reduce the amount of rescheduling of generators, but it will result in an increased number of variables and thus, the complexity to the optimization process is increased. This highly complex problem is solved by using nonlinear programming. The AC based OPF model is preferred, since the corrective security actions require highly accurate solutions. IEEE 30 bus system is used to test the proposed scheme and the results are compared with the traditional CSCOPF. It can be seen that the proposed idea provides a notable improvement in the reduction of cost incurred for restoring the system security.展开更多
In the year of 1768,the country was sent into a nation wide panic by a sorcery case named"soul stealing"in China,to which the emperor,officials and civilians at that time all responded differently.Based on t...In the year of 1768,the country was sent into a nation wide panic by a sorcery case named"soul stealing"in China,to which the emperor,officials and civilians at that time all responded differently.Based on the"soul stealing"case,this paper gives an analysis of the political environment and the bureaucratic system to explore the motives driven by power involved in the proceedings of the case,and in doing so the paper attempts to provide insights into the implications of the ancient power system that makes possible the abuse of authority.展开更多
文摘Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has also increased as more devices are being connected to the network. To understand the physical laws governing the operation of the network, techniques such as optimal power flow (OPF), Economic dispatch (ED) and Security constrained optimal power flow (SCOPF) were developed. These techniques have been used extensively in network operation, planning and so on. However, an in-depth presentation showcasing the merits and demerits of these techniques is still lacking in the literature. Hence, this paper intends to fill this gap. In this paper, Economic dispatch, optimal power flow and security-constrained optimal power flow are applied to a 3-bus test system using a linear programming approach. The results of the ED, OPF and SC-OPF are compared and presented.
基金supported by the Sichuan Science and Technology Program(grant number 2022YFG0123).
文摘In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort.
基金supported by Science and Technology project of the State Grid Corporation of China“Research on Active Development Planning Technology and Comprehensive Benefit Analysis Method for Regional Smart Grid Comprehensive Demonstration Zone”National Natural Science Foundation of China(51607104)
文摘In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE.
文摘In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.
基金supported by the National Natural Science Foundation of China(No.61403100)Fundamental Research Funds for the Central Universities(HIT.NSRIF.2015037)
文摘To make full use of expanded maneuverability and increased range,adaptive constrained on-board guidance technology is the key capability for a glide vehicle with a double-pulse rocket engine,especially under the requirements of desired target changing and on-line reconfigurable control and guidance.Based on the rapid footprint analysis,whether the new target is within the current footprint area is firstly judged.If not,the rocket engine ignites by the logic obtained from the analysis of optimal flight range by the method of hp-adaptive Gauss pseudospectral method(hp-GPM).Then,an on-board trajectory generation method based on powered quasi-equilibrium glide condition(QEGC)and linear quadratic regulator(LQR)method is used to guide the vehicle to the new target.The effectiveness of the guidance method consisted of powered on-board trajectory generation,LQR trajectory tracking,footprint calculation,and ignition time determination is indicated by some simulation examples.
文摘A Cognitive radio communication link is possible to be interrupted easily when its physical channel suffers severe fading. Relay technology is an effective way to mitigate the fading effect of wireless channels in a network. Based on the highest achievable rate of the relay channels, this paper considers a cognitive radio relay network where the secondary transmitter communicates with the receiver through the best relay node under the peak power constraint of a primary receiver. Intuitively, the secondary transmission can benefit from an intermediate relay node chosen from N possible nodes. To quantify this benefit, outage probability of cognitive radio relay networks is derived and also the closed-form expressions for outage capacity and ergodic capacity of cognitive radio relay networks are obtained in Rayleigh fading channels. Numerical simulation results are provided to show that the outage capacity and ergodic capacity benefit tremendously by properly increasing the number of relaying nodes.
文摘Intensive in-depth development of resources, centralized purchasing and gradually expand under the category of environment, this paper studies how to use information technology tools to construction quality supervision and management system that focuses on the quality of supervision and project management, quality control process management, quality monitoring statistics report management, platform management-related content in four areas. Through the construction quality supervision and management system, to better enhance the quality of electric power enterprise management level, to ensure that the material quality, quantity of time and supplies. strengthening quality supervision and management can not only effectively reduce material procurement costs, but also enhance the competitiveness of enterprises.
文摘Power is the nucleus of social and political life. Effective restraint on and supervision over the operation of power is the fundamental way of preventing corruption of power, which at the same time constitutes an important indication to democracy and its development in a given country. Looking forward to attaining the strategic goal of building a society of relative prosperity in all aspects, the Sixteenth National Congress of the Communist Party of China called for "strengthening the restraint of and supervision over power to ensure that power given by the people is truly used to promote the interests of the people." The call specifies, in explicit language, the target of institutionalizing socialist democracy characterized by standardized operations in accordance with legal procedures.
文摘Power图是带权重的Voronoi图,对Power图施加容量限制与质心限制,即可得到基于质心的容量限制Power图(Centroidal Capacity Constrained Power Diagram,CCCPD)。为解决现有CCCPD生成算法交替优化权重和站点位置带来的相互干扰、收敛减慢问题,提出对所有变量进行一体化优化的生成算法,采用多目标优化策略,直接优化质心限制和容量限制形成的混合能量。结果表明:所提算法的生成性能比传统方法提高40%。
基金Supported by the National Natural Science Foundation of China(60974119)
文摘The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.
基金Research of G.Yin was supported by the National Science Foundation (CMS-0510655,DMS-0624849)the National Security Agency (MSPF-068-029)+3 种基金the National Natural Science Foundation of China (No.60574069)research of C.-A. Tan was supported by the National Science Foundation (CMS-0510655)research of L.Y.Wang was supported by the National Science Foundation (ECS-0329597, DMS-0624849)research of C.Z.Xu was supported by the National Science Foundation (CCF-0611750,DMS-0624849,CNS-0702488,CRI-0708232).
文摘Power control problems for wireless communication networks are investigated in direct-sequence codedivision multiple-access (DS/CDMA) channels. It is shown that the underlying problem can be formulated as a constrained optimization problem in a stochastic framework. For effective solutions to this optimization problem in real time, recursive algorithms of stochastic approximation type are developed that can solve the problem with unknown system components. Under broad conditions, convergence of the algorithms is established by using weak convergence methods.
文摘The electric power market is changing-it has passed from a regulated market, where the government of each country had the control of prices, to a deregulated market economy. Each company competes in order to get more cli.e.nts and maximize its profits. This market is represented by a Stackelberg game with two firms, leader and follower, and the leader anticipates the reaction of the follower. The problem is formulated as a Mathematical Program with Complementarity Constraints (MPCC). It is shown that the constraint qualifications usually assumed to prove convergence of standard algorithms fail to hold for MPCC. To circumvent this, a reformulation for a nonlinear problem (NLP) is proposed. Numerical tests using the NEOS server platform are presented.
基金funded by Major Science and Technology Projects in Gansu Province(19ZD2GA003).
文摘Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.
文摘After the digital revolution, the power system security becomes an important issue and it urges the power producers to maintain a well secured system in order to supply a quality power to the end users. This paper presents an integrated Corrective Security Constrained Optimal Power Flow (CSCOPF) with Flexible Transmission Line Impedance (FTLI) to enhance the power system security. The corrective approach of SCOPF is chosen, because it allows the corrective equipment to bring back the system to a stable operating point and hence, it offers high flexibility and better economics. The concept of FTLI arises from the ability of FACTS devices such as Thyristor Controlled Series Capacitor (TCSC), which can vary the line reactance to a certain extent. An enhanced security can be achieved by incorporating FTLI into the CSCOPF problem, since the power flow in a system is highly dependent on the line reactance. FTLI based CSCOPF can reduce the amount of rescheduling of generators, but it will result in an increased number of variables and thus, the complexity to the optimization process is increased. This highly complex problem is solved by using nonlinear programming. The AC based OPF model is preferred, since the corrective security actions require highly accurate solutions. IEEE 30 bus system is used to test the proposed scheme and the results are compared with the traditional CSCOPF. It can be seen that the proposed idea provides a notable improvement in the reduction of cost incurred for restoring the system security.
基金supported by the Key Discipline of Administrative Law Project of Shanghai University of Political Science and Law at Colleges and Universities sponsored by the Central Finance
文摘In the year of 1768,the country was sent into a nation wide panic by a sorcery case named"soul stealing"in China,to which the emperor,officials and civilians at that time all responded differently.Based on the"soul stealing"case,this paper gives an analysis of the political environment and the bureaucratic system to explore the motives driven by power involved in the proceedings of the case,and in doing so the paper attempts to provide insights into the implications of the ancient power system that makes possible the abuse of authority.