New operators are presented to introduce “arithmetic calculus”, where 1) the operators are just obvious mathematical facts, and 2) arithmetic calculus refers to summing and subtracting operations without solving equ...New operators are presented to introduce “arithmetic calculus”, where 1) the operators are just obvious mathematical facts, and 2) arithmetic calculus refers to summing and subtracting operations without solving equations. The sole aim of this paper is to make a case for arithmetic calculus, which is lurking in conventional mathematics and science but has no identity of its own. The underlying thinking is: 1) to shift the focus from the whole sequence to any of its single elements;and 2) to factorise each element to building blocks and rules. One outcome of this emerging calculus is to understand the interconnectivity in a family of sequences, without which they are seen as discrete entities with no interconnectivity. Arithmetic calculus is a step closer towards deriving a “Tree of Numbers” reminiscent of the Tree of Life. Another windfall outcome is to show that the deconvolution problem is explicitly well-posed but at the same time implicitly ill-conditioned;and this challenges a misconception that this problem is ill-posed. If the thinking in this paper is not new, this paper forges it through a mathematical spin by presenting new terms, definitions, notations and operators. The return for these out of the blue new aspects is far reaching.展开更多
A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlat...A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.展开更多
A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality co...A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.展开更多
In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis...In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.展开更多
Numeral systems in natural languages show astonishing variety,though with very strong unifying tendencies that are increasing as many indigenous numeral systems disappear through language contact and globalization.Mos...Numeral systems in natural languages show astonishing variety,though with very strong unifying tendencies that are increasing as many indigenous numeral systems disappear through language contact and globalization.Most numeral systems make use of a base,typically 10,less commonly 20,followed by a wide range of other possibilities.Higher numerals are formed from primitive lower numerals by applying the processes of addition and multiplication,in many languages also exponentiation;sometimes,however,numerals are formed from a higher numeral,using subtraction or division.Numerous complexities and idiosyncrasies are discussed,as are numeral systems that fall outside this general characterization,such as restricted numeral systems with no internal arithmetic structure,and some New Guinea extended body-part counting systems.展开更多
Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as ...Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.展开更多
Efficient quantum circuits for arithmetic operations are vital for quantum algorithms.A fault-tolerant circuit is required for a robust quantum computing in the presence of noise.Quantum circuits based on Clifford+T g...Efficient quantum circuits for arithmetic operations are vital for quantum algorithms.A fault-tolerant circuit is required for a robust quantum computing in the presence of noise.Quantum circuits based on Clifford+T gates are easily rendered faulttolerant.Therefore,reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits.In this study,we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count.Next,we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates.Then,we implement cyclic and complete translations of quantum images using quantum arithmetic operations,and the scalar matrix multiplication.Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient.For instance,cyclic translations of a quantum image produce 50%T-depth reduction relative to the previous best-known cyclic translation.展开更多
In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric ...In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric zeros of certain functions,and the estimates apply to the sub-exponential-type non-resonance conditions.As the application of quantitative Green’s function estimates,we prove both the arithmetic version of Anderson localization and the finite volume version of(1/2-)-Holder continuity of the integrated density of states(IDS)for such QP Schrodinger operators.This gives an affirmative answer to Bourgain’s problem in Bourgain(2000).展开更多
The action of N on l^2(N) is studied in association with the multiplicative structure of N. Then the maximal ideal space of the Banach algebra generated by N is homeomorphic to the product of closed unit disks indexed...The action of N on l^2(N) is studied in association with the multiplicative structure of N. Then the maximal ideal space of the Banach algebra generated by N is homeomorphic to the product of closed unit disks indexed by primes, which reflects the fundamental theorem of arithmetic. The C*-algebra generated by N does not contain any non-zero projection of finite rank. This assertion is equivalent to the existence of infinitely many primes. The von Neumann algebra generated by N is B(l^2(N)), the set of all bounded operators on l^2(N).Moreover, the differential operator on l^2(N,1/n(n+1)) defined by ▽f = μ * f is considered, where μ is the Mbius function. It is shown that the spectrum σ(▽) contains the closure of {ζ(s)-1: Re(s) > 1}. Interesting problems concerning are discussed.展开更多
文摘New operators are presented to introduce “arithmetic calculus”, where 1) the operators are just obvious mathematical facts, and 2) arithmetic calculus refers to summing and subtracting operations without solving equations. The sole aim of this paper is to make a case for arithmetic calculus, which is lurking in conventional mathematics and science but has no identity of its own. The underlying thinking is: 1) to shift the focus from the whole sequence to any of its single elements;and 2) to factorise each element to building blocks and rules. One outcome of this emerging calculus is to understand the interconnectivity in a family of sequences, without which they are seen as discrete entities with no interconnectivity. Arithmetic calculus is a step closer towards deriving a “Tree of Numbers” reminiscent of the Tree of Life. Another windfall outcome is to show that the deconvolution problem is explicitly well-posed but at the same time implicitly ill-conditioned;and this challenges a misconception that this problem is ill-posed. If the thinking in this paper is not new, this paper forges it through a mathematical spin by presenting new terms, definitions, notations and operators. The return for these out of the blue new aspects is far reaching.
基金supported by the National Natural Science Foundation for Excellent Young Scholars(Grant 51222502)the National Natural Science Foundation of China(Grant 11172096)the Funds for State Key Laboratory of Construction Machinery(SKLCM2014-1)
文摘A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(20676117) the National Creative Research Groups Science Foundation of China(60421002)
文摘A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.
文摘In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.
文摘Numeral systems in natural languages show astonishing variety,though with very strong unifying tendencies that are increasing as many indigenous numeral systems disappear through language contact and globalization.Most numeral systems make use of a base,typically 10,less commonly 20,followed by a wide range of other possibilities.Higher numerals are formed from primitive lower numerals by applying the processes of addition and multiplication,in many languages also exponentiation;sometimes,however,numerals are formed from a higher numeral,using subtraction or division.Numerous complexities and idiosyncrasies are discussed,as are numeral systems that fall outside this general characterization,such as restricted numeral systems with no internal arithmetic structure,and some New Guinea extended body-part counting systems.
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
基金This project is supported by National Ministry of Education of China (No.020616)Science and Technology Project of Municipal Educational Committee of Chongqing(No.030602)Scientific Research Foundation of Chongqing Institute of Technology(No.2004ZD10).
文摘Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.61762012,and 61763014)the Science and Technology Project of Guangxi(Grant No.2018JJA170083)+3 种基金the National Key Research and Development Plan(Grant Nos.2018YFC1200200,and 2018YFC1200205)the Fund for Distinguished Young Scholars of Jiangxi Province(Grant No.2018ACB2101)the Natural Science Foundation of Jiangxi Province of China(Grant No.20192BAB207014)the Science and Technology Research Project of Jiangxi Provincial Education Department(Grant No.GJJ190297)。
文摘Efficient quantum circuits for arithmetic operations are vital for quantum algorithms.A fault-tolerant circuit is required for a robust quantum computing in the presence of noise.Quantum circuits based on Clifford+T gates are easily rendered faulttolerant.Therefore,reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits.In this study,we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count.Next,we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates.Then,we implement cyclic and complete translations of quantum images using quantum arithmetic operations,and the scalar matrix multiplication.Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient.For instance,cyclic translations of a quantum image produce 50%T-depth reduction relative to the previous best-known cyclic translation.
基金supported by National Natural Science Foundation of China(Grant No.12271380)supported by National Natural Science Foundation of China(Grant Nos.12171010 and 12288101)National Key R&D Program(Grant No.2021YFA1001600)。
文摘In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric zeros of certain functions,and the estimates apply to the sub-exponential-type non-resonance conditions.As the application of quantitative Green’s function estimates,we prove both the arithmetic version of Anderson localization and the finite volume version of(1/2-)-Holder continuity of the integrated density of states(IDS)for such QP Schrodinger operators.This gives an affirmative answer to Bourgain’s problem in Bourgain(2000).
基金supported by National Natural Science Foundation of China (Grant Nos. 11371290 and 11701549)Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2017JM1045)
文摘The action of N on l^2(N) is studied in association with the multiplicative structure of N. Then the maximal ideal space of the Banach algebra generated by N is homeomorphic to the product of closed unit disks indexed by primes, which reflects the fundamental theorem of arithmetic. The C*-algebra generated by N does not contain any non-zero projection of finite rank. This assertion is equivalent to the existence of infinitely many primes. The von Neumann algebra generated by N is B(l^2(N)), the set of all bounded operators on l^2(N).Moreover, the differential operator on l^2(N,1/n(n+1)) defined by ▽f = μ * f is considered, where μ is the Mbius function. It is shown that the spectrum σ(▽) contains the closure of {ζ(s)-1: Re(s) > 1}. Interesting problems concerning are discussed.