Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptiv...Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptive error curve learning ensemble(GA-ECLE)model.The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach.A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy.This approach combines three models,namely CatBoost(CB),Gradient Boost(GB),and Multilayer Perceptron(MLP).The ensembled CB-GB-MLP model’s inner mechanism consists of generating a meta-data from Gradient Boosting and CatBoost models to compute the final predictions using the Multilayer Perceptron network.A genetic algorithm is used to obtain the optimal features to be used for the model.To prove the proposed model’s effectiveness,we have used a four-phase technique using Jeju island’s real energy consumption data.In the first phase,we have obtained the results by applying the CB-GB-MLP model.In the second phase,we have utilized a GA-ensembled model with optimal features.The third phase is for the comparison of the energy forecasting result with the proposed ECL-based model.The fourth stage is the final stage,where we have applied the GA-ECLE model.We obtained a mean absolute error of 3.05,and a root mean square error of 5.05.Extensive experimental results are provided,demonstrating the superiority of the proposed GA-ECLE model over traditional ensemble models.展开更多
A new car-following model is proposed based on the full velocity difference model(FVDM) taking the influence of the friction coefficient and the road curvature into account. Through the control theory, the stability...A new car-following model is proposed based on the full velocity difference model(FVDM) taking the influence of the friction coefficient and the road curvature into account. Through the control theory, the stability conditions are obtained,and by using nonlinear analysis, the time-dependent Ginzburg-Landau(TDGL) equation and the modified Korteweg-de Vries(mKdV) equation are derived. Furthermore, the connection between TDGL and mKdV equations is also given. The numerical simulation is consistent with the theoretical analysis. The evolution of a traffic jam and the corresponding energy consumption are explored. The numerical results show that the control scheme is effective not only to suppress the traffic jam but also to reduce the energy consumption.展开更多
Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal di...Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.展开更多
There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in orde...There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.展开更多
To estimate the fuel consumption of a civil aircraft,we propose to use the receiver operating characteristic(ROC)curve to optimize a support vector machine(SVM)model.The new method and procedure has been developed to ...To estimate the fuel consumption of a civil aircraft,we propose to use the receiver operating characteristic(ROC)curve to optimize a support vector machine(SVM)model.The new method and procedure has been developed to build,train,validate,and apply an SVM model.A conceptual support vector network is proposed to model fuel consumption,and the flight data collected from routes are used as the inputs to train an SVM model.During the training phase,an ROC curve is defined to evaluate the performance of the model.To validate the applicability of the trained model,a case study is developed to compare the data from an aircraft performance manual and from the implemented simulation model.The investigated aircraft in the case study is a Boeing 737-800 powered by CFM-56 engines.The comparison has shown that the trained SVM model from the proposed procedure is capable of representing a complex fuel consumption function accurately for all phases during the flight.The proposed methodology is generic,and can be extended to reliably model the fuel consumption of other types of aircraft,such as piston engine aircraft or turboprop engine aircraft.展开更多
基金This research was financially supported by the Ministry of Small and Mediumsized Enterprises(SMEs)and Startups(MSS),Korea,under the“Regional Specialized Industry Development Program(R&D,S2855401)”supervised by the Korea Institute for Advancement of Technology(KIAT).
文摘Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptive error curve learning ensemble(GA-ECLE)model.The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach.A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy.This approach combines three models,namely CatBoost(CB),Gradient Boost(GB),and Multilayer Perceptron(MLP).The ensembled CB-GB-MLP model’s inner mechanism consists of generating a meta-data from Gradient Boosting and CatBoost models to compute the final predictions using the Multilayer Perceptron network.A genetic algorithm is used to obtain the optimal features to be used for the model.To prove the proposed model’s effectiveness,we have used a four-phase technique using Jeju island’s real energy consumption data.In the first phase,we have obtained the results by applying the CB-GB-MLP model.In the second phase,we have utilized a GA-ensembled model with optimal features.The third phase is for the comparison of the energy forecasting result with the proposed ECL-based model.The fourth stage is the final stage,where we have applied the GA-ECLE model.We obtained a mean absolute error of 3.05,and a root mean square error of 5.05.Extensive experimental results are provided,demonstrating the superiority of the proposed GA-ECLE model over traditional ensemble models.
基金Project supported by the National Natural Science Foundation of China(Grant No.11372166)the Scientific Research Fund of Zhejiang Province,China(Grant Nos.LY15A020007 and LY15E080013)+1 种基金the Natural Science Foundation of Ningbo,China(Grant Nos.2014A610028 and 2014A610022)the K.C.Wong Magna Fund in Ningbo University,China
文摘A new car-following model is proposed based on the full velocity difference model(FVDM) taking the influence of the friction coefficient and the road curvature into account. Through the control theory, the stability conditions are obtained,and by using nonlinear analysis, the time-dependent Ginzburg-Landau(TDGL) equation and the modified Korteweg-de Vries(mKdV) equation are derived. Furthermore, the connection between TDGL and mKdV equations is also given. The numerical simulation is consistent with the theoretical analysis. The evolution of a traffic jam and the corresponding energy consumption are explored. The numerical results show that the control scheme is effective not only to suppress the traffic jam but also to reduce the energy consumption.
文摘Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.
文摘There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.
基金This paper was supported by the National Natural Science Foundation of China(NSFC)[61179066].
文摘To estimate the fuel consumption of a civil aircraft,we propose to use the receiver operating characteristic(ROC)curve to optimize a support vector machine(SVM)model.The new method and procedure has been developed to build,train,validate,and apply an SVM model.A conceptual support vector network is proposed to model fuel consumption,and the flight data collected from routes are used as the inputs to train an SVM model.During the training phase,an ROC curve is defined to evaluate the performance of the model.To validate the applicability of the trained model,a case study is developed to compare the data from an aircraft performance manual and from the implemented simulation model.The investigated aircraft in the case study is a Boeing 737-800 powered by CFM-56 engines.The comparison has shown that the trained SVM model from the proposed procedure is capable of representing a complex fuel consumption function accurately for all phases during the flight.The proposed methodology is generic,and can be extended to reliably model the fuel consumption of other types of aircraft,such as piston engine aircraft or turboprop engine aircraft.