We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a clas...We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.展开更多
A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructu...A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructures has been recently described [Law and Denis. AJAC, 14(4), 149-174, (2023)]. This study explores this relation further for palladium, platinum, and zinc oxide nanostructures. Parametric cluster analysis and statistical analysis is used to test the power-law signature of over four orders of magnitude as a function of six microwave applicator-types metal precursor, non-Green Chemistry synthesis and claimed Green Chemistry. It is found that for the claimed Green Chemistry, process energy budget ranges from 0.291 to 900 kJ, with a residual error ranging between −33 to +25.9 kJ·ml<sup>-1</sup>. The non-Green Chemistry synthesis has a higher process energy budget range from 3.2 kJ to 3.3 MJ, with a residual error of −33.3 to +245.3 kJ·ml<sup>-1</sup>. It is also found that the energy profile over time produced by software controlled digestion applicators is poorly reported which leads to residual error problematic outliers that produce possible phase-transition in the power-law signature. The original Au and Ag database and new Pd, Pt and ZnO database (with and without problematic outliers) yield a global microwave-assisted synthesis power-law signature constants of c = 0.7172 ± 0.3214 kJ·ml<sup>-1</sup> at x-axes = 0.001 kJ, and the exponent, n = 0.791 ± 0.055. The information in this study is aimed to understand variations in historical microwave-assisted synthesis processes, and develop new scale-out synthesis through process intensification.展开更多
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy...This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.展开更多
Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, t...Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, the numerical results were given by nonlinear finite element analysis. Results The numerical results of the shape of the active plastic sone, the angular distribution of stresseses and Clack tip opening displacement (CTOD) in the vicinity at the hp of the steadily groWing CraCk are determined. Conclusion The comparison between the numerical results given by the present wort and those given by analytic asymptotic analysis shows that the present work reached a very high accuracy.展开更多
Purpose:The goal of this study is a comparative analysis of the relation between funding(a main driver for scientific research)and citations in papers of Nobel Laureates in physics,chemistry and medicine over 2019-202...Purpose:The goal of this study is a comparative analysis of the relation between funding(a main driver for scientific research)and citations in papers of Nobel Laureates in physics,chemistry and medicine over 2019-2020 and the same relation in these research fields as a whole.Design/methodology/approach:This study utilizes a power law model to explore the relationship between research funding and citations of related papers.The study here analyzes 3,539 recorded documents by Nobel Laureates in physics,chemistry and medicine and a broader dataset of 183,016 documents related to the fields of physics,medicine,and chemistry recorded in the Web of Science database.Findings:Results reveal that in chemistry and medicine,funded researches published in papers of Nobel Laureates have higher citations than unfunded studies published in articles;vice versa high citations of Nobel Laureates in physics are for unfunded studies published in papers.Instead,when overall data of publications and citations in physics,chemistry and medicine are analyzed,all papers based on funded researches show higher citations than unfunded ones.Originality/value:Results clarify the driving role of research funding for science diffusion that are systematized in general properties:a)articles concerning funded researches receive more citations than(un)funded studies published in papers of physics,chemistry and medicine sciences,generating a high Matthew effect(a higher growth of citations with the increase in the number of papers);b)research funding increases the citations of articles in fields oriented to applied research(e.g.,chemistry and medicine)more than fields oriented towards basic research(e.g.,physics).Practical implications:The results here explain some characteristics of scientific development and diffusion,highlighting the critical role of research funding in fostering citations and the expansion of scientific knowledge.This finding can support decision-making of policymakers and R&D managers to improve the effectiveness in allocating financial resources in science policies to generate a higher positive scientific and societal impact.展开更多
The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existen...The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research.展开更多
Precipitation sequence is a typical nonlinear and chaotic observational series, and studies on precipitation forecasts are restricted to the use of traditional linear statistical methods, especially when analysing the...Precipitation sequence is a typical nonlinear and chaotic observational series, and studies on precipitation forecasts are restricted to the use of traditional linear statistical methods, especially when analysing the regional characteristics of precipitation. In the context of 20 stations' daily precipitation series (from 1956 to 2000) in South China (SC) and North China (NC), we divide each precipitation series into many self-stationary segments by using the heuristic segmentation algorithm (briefly BG algorithm). For each station's precipitation series, we calculate the exponent of power-law tall (EPT) of the cumulative probability distribution of segments with a length larger than l for precipitation and temperature series. Our results show that the power-law decay of the cumulative probability distribution of stationary segments might be a common attribution for precipitation and other nonstationary time series; the EPT somewhat indicates the precipitation duration and its spatial distribution that might be different from area to area. The EPT in NC is larger than in SC; Meanwhile, EPT might be another effective way to study the abrupt changes in nonlinear and nonstationary time series.展开更多
Aim To construct an analytic solution for the asymptotic field near a tensile cracktip of power-law hardening material under Plane stress condition. Methods Constructing funtion method was used. Results The exact as...Aim To construct an analytic solution for the asymptotic field near a tensile cracktip of power-law hardening material under Plane stress condition. Methods Constructing funtion method was used. Results The exact asymptotic field was found. Conclusion The exact analytic solution for the problem is available.展开更多
This study focusses on the numerical investigations of boundary layer flow for magnetohydrodynamic(MHD)and a power-law nanofluid containing gyrotactic microorganisms on an exponentially stretching surface with zero na...This study focusses on the numerical investigations of boundary layer flow for magnetohydrodynamic(MHD)and a power-law nanofluid containing gyrotactic microorganisms on an exponentially stretching surface with zero nanoparticle mass flux and convective heating.The nonlinear system of the governing equations is transformed and solved by Runge-Kutta-Fehlberg method.The impacts of the transverse magnetic field,bioconvection parameters,Lewis number,nanofluid parameters,Prandtl number and power-law index on the velocity,temperature,nanoparticle volume fraction,density of motile microorganism profiles is explored.In addition,the impacts of these parameters on local skin-friction coefficient,local Nusselt,local Sherwood numbers and local density number of the motile microorganisms are discussed.The results reveal that the power law index is considered an important factor in this study.Due to neglecting the buoyancy force term,the bioconvection and nanofluid parameters have slight effects on the velocity profiles.The resultant Lorentz force,from increasing the magnetic field parameter,try to decrease the velocity profiles and increase the rescaled density of motile microorganisms,temperature and nanoparticle volume fraction profiles.Physically,an augmentation of power-law index drops the reduced local skin-friction and reduced Sherwood number,while it increases reduced Nusselt number and reduced local density number of motile microorganisms.展开更多
The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Dom...The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Domino-style and nearly parallel. The cumulative length and displacement of the faults obey power-law distribution. The fractal dimension of the fault traces is -1.49. Using the multi-line one-dimensional sampling, the calculated exponent of cumulative fault displacements is -0.66. A cumulative curve combining measurements of all four sections yielded a slope of -0.63. The displacement-length plot shows a non-linear relationship and large dispersion of data. The large dispersion in the plot is mainly due to the fault linkage during faulting. An estimation of extensional strain due to the normal faults is ca. 0.1830. The bed extension strain is always less than or equal to the horizontal extension strain. The deformation in the Sierra de San Miguelito occurred near the surface, producing pervasive faults and many faults are too small to appear in maps and sections at common scales. The stretching produced by small faults reach ca. 33% of the total horizontal elongation.展开更多
This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolut...This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well.展开更多
A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. Th...A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.展开更多
Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood rou...Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood routing.While their use may guarantee a significant reduction of the computational effort,it is mandatory to define the conditions in which they may be confidently applied.The present paper investigates the applicability conditions of the kinematic,diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids.The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress,such as clay or kaolin suspensions,which are frequently encountered in Chinese rivers.In the framework of a linear analysis,the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one.Based on this comparison,applicability criteria for the different wave approximations for mud flood of power-law fluids are derived.The presented results provide guidelines for selecting the appropriate approximation for a given flow problem,and therefore they may represent a useful tool for engineering predictions.展开更多
Flow and heat transfer of a pseudo-plastic power-law fluid over a stretching permeable surface with the magnetic effect is investigated. In the boundary conditions,the nonlinear temperature jump and the velocity slip ...Flow and heat transfer of a pseudo-plastic power-law fluid over a stretching permeable surface with the magnetic effect is investigated. In the boundary conditions,the nonlinear temperature jump and the velocity slip are considered. Semi-similarity equations are obtained and solved by bvp4c with MATLAB. The problem can be considered as an extension of the previous work done by Mahmoud(Mahmoud, M. A. A. Slip velocity effect on a non-Newtonian power-law fluid over a moving permeable surface with heat generation. Mathematical and Computer Modelling, 54, 1228–1237(2011)). Efforts are made to discuss the effects of the power-law number, slip velocity, and temperature jump on the dimensionless velocity and temperature distribution.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.
文摘A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructures has been recently described [Law and Denis. AJAC, 14(4), 149-174, (2023)]. This study explores this relation further for palladium, platinum, and zinc oxide nanostructures. Parametric cluster analysis and statistical analysis is used to test the power-law signature of over four orders of magnitude as a function of six microwave applicator-types metal precursor, non-Green Chemistry synthesis and claimed Green Chemistry. It is found that for the claimed Green Chemistry, process energy budget ranges from 0.291 to 900 kJ, with a residual error ranging between −33 to +25.9 kJ·ml<sup>-1</sup>. The non-Green Chemistry synthesis has a higher process energy budget range from 3.2 kJ to 3.3 MJ, with a residual error of −33.3 to +245.3 kJ·ml<sup>-1</sup>. It is also found that the energy profile over time produced by software controlled digestion applicators is poorly reported which leads to residual error problematic outliers that produce possible phase-transition in the power-law signature. The original Au and Ag database and new Pd, Pt and ZnO database (with and without problematic outliers) yield a global microwave-assisted synthesis power-law signature constants of c = 0.7172 ± 0.3214 kJ·ml<sup>-1</sup> at x-axes = 0.001 kJ, and the exponent, n = 0.791 ± 0.055. The information in this study is aimed to understand variations in historical microwave-assisted synthesis processes, and develop new scale-out synthesis through process intensification.
文摘This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.
文摘Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, the numerical results were given by nonlinear finite element analysis. Results The numerical results of the shape of the active plastic sone, the angular distribution of stresseses and Clack tip opening displacement (CTOD) in the vicinity at the hp of the steadily groWing CraCk are determined. Conclusion The comparison between the numerical results given by the present wort and those given by analytic asymptotic analysis shows that the present work reached a very high accuracy.
文摘Purpose:The goal of this study is a comparative analysis of the relation between funding(a main driver for scientific research)and citations in papers of Nobel Laureates in physics,chemistry and medicine over 2019-2020 and the same relation in these research fields as a whole.Design/methodology/approach:This study utilizes a power law model to explore the relationship between research funding and citations of related papers.The study here analyzes 3,539 recorded documents by Nobel Laureates in physics,chemistry and medicine and a broader dataset of 183,016 documents related to the fields of physics,medicine,and chemistry recorded in the Web of Science database.Findings:Results reveal that in chemistry and medicine,funded researches published in papers of Nobel Laureates have higher citations than unfunded studies published in articles;vice versa high citations of Nobel Laureates in physics are for unfunded studies published in papers.Instead,when overall data of publications and citations in physics,chemistry and medicine are analyzed,all papers based on funded researches show higher citations than unfunded ones.Originality/value:Results clarify the driving role of research funding for science diffusion that are systematized in general properties:a)articles concerning funded researches receive more citations than(un)funded studies published in papers of physics,chemistry and medicine sciences,generating a high Matthew effect(a higher growth of citations with the increase in the number of papers);b)research funding increases the citations of articles in fields oriented to applied research(e.g.,chemistry and medicine)more than fields oriented towards basic research(e.g.,physics).Practical implications:The results here explain some characteristics of scientific development and diffusion,highlighting the critical role of research funding in fostering citations and the expansion of scientific knowledge.This finding can support decision-making of policymakers and R&D managers to improve the effectiveness in allocating financial resources in science policies to generate a higher positive scientific and societal impact.
文摘The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research.
基金supported by the National Natural Science Foundation of China (Grant No 40675044)the State Key development program for Basic Research (Grant No 2006CB400503)
文摘Precipitation sequence is a typical nonlinear and chaotic observational series, and studies on precipitation forecasts are restricted to the use of traditional linear statistical methods, especially when analysing the regional characteristics of precipitation. In the context of 20 stations' daily precipitation series (from 1956 to 2000) in South China (SC) and North China (NC), we divide each precipitation series into many self-stationary segments by using the heuristic segmentation algorithm (briefly BG algorithm). For each station's precipitation series, we calculate the exponent of power-law tall (EPT) of the cumulative probability distribution of segments with a length larger than l for precipitation and temperature series. Our results show that the power-law decay of the cumulative probability distribution of stationary segments might be a common attribution for precipitation and other nonstationary time series; the EPT somewhat indicates the precipitation duration and its spatial distribution that might be different from area to area. The EPT in NC is larger than in SC; Meanwhile, EPT might be another effective way to study the abrupt changes in nonlinear and nonstationary time series.
文摘Aim To construct an analytic solution for the asymptotic field near a tensile cracktip of power-law hardening material under Plane stress condition. Methods Constructing funtion method was used. Results The exact asymptotic field was found. Conclusion The exact analytic solution for the problem is available.
基金the Deanship of Scientific Research at King Khalid University for funding this work through Big Group Research Project under grant number(R.G.P2/16/40).
文摘This study focusses on the numerical investigations of boundary layer flow for magnetohydrodynamic(MHD)and a power-law nanofluid containing gyrotactic microorganisms on an exponentially stretching surface with zero nanoparticle mass flux and convective heating.The nonlinear system of the governing equations is transformed and solved by Runge-Kutta-Fehlberg method.The impacts of the transverse magnetic field,bioconvection parameters,Lewis number,nanofluid parameters,Prandtl number and power-law index on the velocity,temperature,nanoparticle volume fraction,density of motile microorganism profiles is explored.In addition,the impacts of these parameters on local skin-friction coefficient,local Nusselt,local Sherwood numbers and local density number of the motile microorganisms are discussed.The results reveal that the power law index is considered an important factor in this study.Due to neglecting the buoyancy force term,the bioconvection and nanofluid parameters have slight effects on the velocity profiles.The resultant Lorentz force,from increasing the magnetic field parameter,try to decrease the velocity profiles and increase the rescaled density of motile microorganisms,temperature and nanoparticle volume fraction profiles.Physically,an augmentation of power-law index drops the reduced local skin-friction and reduced Sherwood number,while it increases reduced Nusselt number and reduced local density number of motile microorganisms.
文摘The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Domino-style and nearly parallel. The cumulative length and displacement of the faults obey power-law distribution. The fractal dimension of the fault traces is -1.49. Using the multi-line one-dimensional sampling, the calculated exponent of cumulative fault displacements is -0.66. A cumulative curve combining measurements of all four sections yielded a slope of -0.63. The displacement-length plot shows a non-linear relationship and large dispersion of data. The large dispersion in the plot is mainly due to the fault linkage during faulting. An estimation of extensional strain due to the normal faults is ca. 0.1830. The bed extension strain is always less than or equal to the horizontal extension strain. The deformation in the Sierra de San Miguelito occurred near the surface, producing pervasive faults and many faults are too small to appear in maps and sections at common scales. The stretching produced by small faults reach ca. 33% of the total horizontal elongation.
基金supported by the National Natural Science Foundation of China(Grant No.70871082)the Shanghai Leading Academic Discipline Project,China(Grant No.S30504)
文摘This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well.
文摘A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.
文摘Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood routing.While their use may guarantee a significant reduction of the computational effort,it is mandatory to define the conditions in which they may be confidently applied.The present paper investigates the applicability conditions of the kinematic,diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids.The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress,such as clay or kaolin suspensions,which are frequently encountered in Chinese rivers.In the framework of a linear analysis,the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one.Based on this comparison,applicability criteria for the different wave approximations for mud flood of power-law fluids are derived.The presented results provide guidelines for selecting the appropriate approximation for a given flow problem,and therefore they may represent a useful tool for engineering predictions.
基金Project supported by the National Natural Science Foundation of China(No.11302024)the Fundamental Research Funds for the Central Universities(No.FRF-TP-12-108A)the Foundation of the China Scholarship Council in 2014(No.154201406465041)
文摘Flow and heat transfer of a pseudo-plastic power-law fluid over a stretching permeable surface with the magnetic effect is investigated. In the boundary conditions,the nonlinear temperature jump and the velocity slip are considered. Semi-similarity equations are obtained and solved by bvp4c with MATLAB. The problem can be considered as an extension of the previous work done by Mahmoud(Mahmoud, M. A. A. Slip velocity effect on a non-Newtonian power-law fluid over a moving permeable surface with heat generation. Mathematical and Computer Modelling, 54, 1228–1237(2011)). Efforts are made to discuss the effects of the power-law number, slip velocity, and temperature jump on the dimensionless velocity and temperature distribution.