Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportio...Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.展开更多
Unified Power Quality Controller(UPQC) was proposed to comprehensively improve power quality of coal mine power network and its basic structure and operation principle was introduced. In order to overcome time lag o...Unified Power Quality Controller(UPQC) was proposed to comprehensively improve power quality of coal mine power network and its basic structure and operation principle was introduced. In order to overcome time lag of Active Power Filter(APF) in compensating harmonic and reactive current, a novel method based on gray system theory was proposed to predict harmonic current and other distortion component. The mathematical model of component to be compensated was constructed by data sequence of distortion component, which could exactly forecast compensation signal of next period. The optimal control strategy was selected according to the principle of output signal approaching component to be compensated as near as possible. Before predicating each time the oldest data was eliminated while the latest data was added to data sequence. Then new predication model was established once again. The results show that the method can always construct mathematical model with variation of system parameters, reflect the latest state of system and not increase calculation quantity. The feasible and effective control strategy can improve power quality of coal mine power network.展开更多
Calculations and analyses are made for the ultimate composition of 158 Chinese power coals. The results reveal that the carbon content on as received basis, Cr, increases linearly with the increase of the low heating ...Calculations and analyses are made for the ultimate composition of 158 Chinese power coals. The results reveal that the carbon content on as received basis, Cr, increases linearly with the increase of the low heating value Qnot,a, on as received basis; the hydrogen content on as received basis, Hr, first increases with the increase of the volatile content on dry ash free basis Vdaf (Vdaf 〈 33.0%) and then decreases (Vdaf 〉 33.0%); the oxygen content on as received basis, Oar, increases linearly with the increase of Vau, ranging between 2.0% and 12.5%. By comparison, the nitrogen content on as received basis N of bituminous and lean coal is higher, while the sulfur content on as received basis Sar Of anthracite is higher than bituminous coal, lean coal and lignite. The hydrogen on as received basis Hr is important for the conversion between low heating value and high heating value on as received basis for Chinese power coals, and Sr is important for the calculation of high heating value from the oxygen bomb heat value for Chinese power coals.展开更多
An augmented proportional-integral sliding surface was designed for a sliding mode controller. A chatter free sliding mode control strategy for a chaotic coal mine power grid was developed. The stability of the contro...An augmented proportional-integral sliding surface was designed for a sliding mode controller. A chatter free sliding mode control strategy for a chaotic coal mine power grid was developed. The stability of the control strategy was proven by Lyapunov stability theorem. The proposed sliding mode control strategy eliminated the chattering phenomenon by replacing the sign function with a saturation function, and by replacing the constant coefficients in the reaching law with adaptive ones. An immune genetic algorithm was used to optimize the parameters in the improved reaching law. The cut-in time of the controllers was optimized to reduce the peak energy of their output. Simulations showed that the proposed sliding mode controller has good, chatter flee performance.展开更多
The micelle generating process of the sodium dodecyl sulfate(SDS) solution with the addition of chemical inhibitors was elucidated using phase separation model, and the descending order of the capacity for the selecte...The micelle generating process of the sodium dodecyl sulfate(SDS) solution with the addition of chemical inhibitors was elucidated using phase separation model, and the descending order of the capacity for the selected chemical inhibitors to reduce the critical micelle concentrations of the solution are Mg Cl_2, Ca Cl_2,NH_4HCO_3 and NH_4Cl. The data to quantitatively describe the foam decay process, including foaming ratio,foam life and decay behaviors, was obtained by pressure measuring system. The results indicate that chemical inhibitors can improve the solution foamability. The capacity of the inhibitors to enhance the solution foamability is sorted as NH_4 Cl, NH_4HCO_3, Mg Cl2 and Ca Cl_2 which can distinctly improve the foam stability as well. The capacity of the inhibitors to enhance the SDS foam stability can be arranged as Mg Cl_2, NH_4 Cl, NH_4HCO_3 and Ca Cl_2. It is observed that the gravity drainage plays a leading role in the increase of proportion of diffusion drainage. The oxidation dynamic parameters of the coal samples treated by inhibition foams were investigated using thermal analysis technique, and their synergistic effects on inhibiting coal oxidation were explored.展开更多
Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market p...Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market price of power coal. The GCP (green coal power) is the power generated in coal-combustion with zero emission. The author indicates that it is possible to make coal-fired power plants emission free based on thermodynamic analysis and purposely designed experiments using SFG (simulated flue gases). It is concluded in the study that all SO_2 and NOx in the post-combustion flue gas are reduced to inoffensive substances at temperature lower than 750 ℃ when contacting carbon and elemental sulfur is separated in succeeded cooling of flue gas at temperatures 200-400 ℃, and the ultrafine dusts are trapped in condensed water at temperature blow 100 ℃. Based on chemical engineering expertise the author is sure that the cost for removing acid gases is much lower than any clean coal technologies known to today. Instead of capture, the remained CO_2 is converted to CO in the second time contact with carbon at 900-950 ℃. CO is the raw material of chemical synthesis and, thus, CO_2 is stored in chemical products such as methanol, fertilizer, plastics, etc. The simple and low-cost processing allows GCP utilized in practice easily.展开更多
In order to explore the changes in the growth and protein contents of Spirulina and obtain a proper strain for the fixation of carbon dioxide(CO2 from flue gas,the strains isolated from the Spirulina farms and the str...In order to explore the changes in the growth and protein contents of Spirulina and obtain a proper strain for the fixation of carbon dioxide(CO2 from flue gas,the strains isolated from the Spirulina farms and the strain 208 were cultured under different aeration conditions including no CO2,10%CO2 and coal power plant flue gas supplements.The physiological indexes including filament length,biomass yield and chlorophyll a,soluble protein and phycocyanin contents were determined,respectively.When cultured without CO2 supplement,the strain 4-5 exhibited the highest biomass yield(1.880 g L^(−1)and a specific growth rate(0.367 d−1.However,the specific growth rate of all strains decreased significantly when they were cultured under 10%CO2 and unfiltered coal power plant flue gas supplements.Considerable differences were noted in the performance of the experimental microalgal strains under different contemporaneous conditions.The strain 7-8 achieved the highest biomass yield(1.603 g L^(−1)and relatively high phycocyanin content(7.1%)under 10%CO2 supplement.We noted that strain 4-5 had the highest specific growth rate(0.182 d−1 and biomass yield(0.43 g L^(−1)under coal power plant flue gas supplement.Strain 6-10 displayed the highest soluble protein content(66.02%),and strain 7-8 showed the highest phycocyanin content(9.28%)under coal power plant flue gas supplement.展开更多
This paper introduces the situation of coal and power production, the tense supply of powercoal and deteriorated coal quality in 2004, analyzes the causes of tense supply of power and coal, one ofwhich is due to the g...This paper introduces the situation of coal and power production, the tense supply of powercoal and deteriorated coal quality in 2004, analyzes the causes of tense supply of power and coal, one ofwhich is due to the government regulated power tariff against rapid escalation of coal price that powerenterprises can hardly afford. It also presents some policy proposals to relieve the contradiction betweencoal and power, including to intensify macroscopic regulation between industries and regions, solve theproblem of power coal transportation and reduction or exemption of tax on coal industry and circulationlinks, through secondary distribution to regulate profit difference among industries.展开更多
At the beginning of 2008, the Central, East and South China suffered a rare snow and ice disaster. After the disaster, power generation and power grid enterprises faced a big problem of power coal supply.
According to statistics, the average dust collection efficiency of flue gas emission in the large and medium- sized power plants in Zhejiang Province at present has attained higher than 97% which surpasses the 95% sta...According to statistics, the average dust collection efficiency of flue gas emission in the large and medium- sized power plants in Zhejiang Province at present has attained higher than 97% which surpasses the 95% standard as stipulated by the Ministry of Electric Power. The dust collection efficiency of the Beilungang Power Plant has already attained 99.92%. In recent years, Zhejiang Electric Power Corporation has stipulated that all the newly constructed generating units shall be equipped with high efficiency electrostatic precipitator (ESP) while the existing power plants shall speed up their renovation work for their dust collectors. In combination with the fourth stage project of the Taizhou Power Plant, the improvement work of the dust展开更多
The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and com...The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and compared with that of the flyash from Taian Coal Fired Power Plant.The result shows that the flyash from coal refuse fired power plant is of better quality in making construction items,for being brighter in color,fine and high activity.Some ways of comprehensive utilization of the ash have been suggested in this paper.展开更多
The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC'...The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation展开更多
This paper is based on the existing status and development prediction of Fujian power industry, and describes that the structure of energy sources for generating power which will mainly use coal, will not be changed i...This paper is based on the existing status and development prediction of Fujian power industry, and describes that the structure of energy sources for generating power which will mainly use coal, will not be changed in the 2010s and 2020s in Fujian Province. In order to meet the requirements of high efficiency and envirofimental protection, the usage of clean coal technologies for power generating will be an inevitable option and the technologies will occupy the important position in Fujian power industry. This paper puts forward the staged targets and measures of developing and utilizing clean coal technologies, suggests that all government depotments related should give support and guarantee in policies and conditions, and welcome technical and economic cooperation at home and abroad, which is good for co-development of both parties.展开更多
Introduction:The development of coal power base(CPB)poses a severe challenge to the soil.We conducted a soil survey in Xilinhot CPB,to evaluate and analyze the pollution characteristics,potential ecological risk,and s...Introduction:The development of coal power base(CPB)poses a severe challenge to the soil.We conducted a soil survey in Xilinhot CPB,to evaluate and analyze the pollution characteristics,potential ecological risk,and sources of six heavy metals(As,Pb,Cu,Zn,Mn,and Cd)in soil by using Geo-accumulation index,revised Nemerow integrated pollution index(RNIPI),and potential ecological risk index(RI).Outcomes/other:The results showed that the pollution of Cd and As were dramatic.The mean of Cd and As were 1.11 mg·kg^(-1) and 25.13 mg·kg^(-1),which were 42.55 times and 4.41 times higher than its local background value.The Geo-accumulation indices showed the contamination degree of Cd was strong and As was moderate,and the status of Cu,Pb,Zn,and Mn were uncontaminated.Xilinhot was strongly contaminated based on its RNIPI and RI values.Discussion:The accumulations of As,Pb,and Cd were mainly associated with anthropogenic sources,including coal mining and combustion,and industrial exhaust emissions.Cu,Mn,and Zn were primarily originated from the parent material(natural sources).Conclusion:This study provides scientific basis and effective countermeasures for the prevention and control of soil pollution in surrounding areas of CPB.展开更多
In this study, the transportation and storage problems for regional power coal allocation planning are formulated as transportation and storage problems to realize the minimization of the regional transportation and s...In this study, the transportation and storage problems for regional power coal allocation planning are formulated as transportation and storage problems to realize the minimization of the regional transportation and storage cost. An effective optimiza- tion model is proposed to solve transportation and storage prob- lems for regional power coal allocation planning, which has inter- active effect on multiple participants, such as regional power plants, coal transportation companies, logistics centers, and coal storage centers. A case study illustrates that the model and algo- rithm are more reasonable compared with the classic transporta- tion model, and the sensitivity analysis improves transportation and storage strategies for regional power coal allocation planning. Results demonstrate that this model can not only satisfy more of the actual requirements of the integral system but also offer more information to the decision-makers (DMs) for reference in favor of exalting decision-making quality.展开更多
Increased penetration of renewables for power generation has negatively impacted the dynamics of conventional fossil fuel-based power plants.The power plants operating on the base load are forced to cycle,to adjust to...Increased penetration of renewables for power generation has negatively impacted the dynamics of conventional fossil fuel-based power plants.The power plants operating on the base load are forced to cycle,to adjust to the fluctuating power demands.This results in an inefficient operation of the coal power plants,which leads up to higher operating losses.To overcome such operational challenge associated with cycling and to develop an optimal process control,this work analyzes a set of models for predicting power generation.Moreover,the power generation is intrinsically affected by the state of the power plant components,and therefore our model development also incorporates additional power plant process variables while forecasting the power generation.We present and compare multiple state-of-the-art forecasting data-driven methods for power generation to determine the most adequate and accurate model.We also develop an interpretable attention-based transformer model to explain the importance of process variables during training and forecasting.The trained deep neural network(DNN)LSTM model has good accuracy in predicting gross power generation under various prediction horizons with/without cycling events and outperforms the other models for long-term forecasting.The DNN memory-based models show significant superiority over other state-of-the-art machine learning models for short,medium and long range predictions.The transformer-based model with attention enhances the selection of historical data for multi-horizon forecasting,and also allows to interpret the significance of internal power plant components on the power generation.This newly gained insights can be used by operation engineers to anticipate and monitor the health of power plant equipment during high cycling periods.展开更多
As the world seeks to increase ambition rapidly to limit global warming to 1.5℃,joint leadership from the world's largest greenhouse gas(GHG)emitters-the United States(U.S.)and China-will be critical to deliver s...As the world seeks to increase ambition rapidly to limit global warming to 1.5℃,joint leadership from the world's largest greenhouse gas(GHG)emitters-the United States(U.S.)and China-will be critical to deliver significant emissions reductions from their own countries as well as to catalyze increased international action.After a period of uncertainty in international climate policy,these countries now both have current leadership that supports ambitious climate action.In this context,a feasible,high-impact,and potentially globally catalytic agreement by the U.S.and China to transition away from coal to clean energy would be a major contribution toward this global effort.We undertake a plant-by-plant assessment in the power sector to identify practical coal retirement pathways for each country that are in line with national priorities and the global 1.5℃ target.Our plant-by-plant analysis shows that the 1.5℃-compatible pathways may result in an average retirement age of 47 years for the U.S.coal plants and 22 years for Chinese coal plants,raising important questions of how to compare broader economic,employment,and social impacts.We also demonstrate that such pathways would also lead to significant emissions reductions,lowering overall global energy-related CO_(2) emissions by about 9%in 2030 relative to 2020.A catalytic effect from the possibility of other countries taking compatible actions is estimated to reduce global emissions by 5.1 Gt CO_(2) in 2030 and by 10.1 Gt CO_(2) in 2045.展开更多
In accordance with the experience withSynchronous construction of coal mine andpower plant in Yongxia mining area, thispaper discusses the existing issues regardingmine mouth power plant including capital,power grid c...In accordance with the experience withSynchronous construction of coal mine andpower plant in Yongxia mining area, thispaper discusses the existing issues regardingmine mouth power plant including capital,power grid connection, electricity price for gridconnection, installed capacity generation setselection as well as self- protection of coalindustry. It is regarded that under marketeconomy as long as the benefits of the threesectors of coal, electricity and the local arecomprehensively considered, a suitable waycan be arrived for conl industry to operate electricity business.展开更多
基金Supported by the National Natural Science Foundation of China (61174059, 60934007, 61233004)the National Basic Research Program of China (2013CB035406)Shanghai Rising-Star Tracking Program (11QH1401300)
文摘Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.
文摘Unified Power Quality Controller(UPQC) was proposed to comprehensively improve power quality of coal mine power network and its basic structure and operation principle was introduced. In order to overcome time lag of Active Power Filter(APF) in compensating harmonic and reactive current, a novel method based on gray system theory was proposed to predict harmonic current and other distortion component. The mathematical model of component to be compensated was constructed by data sequence of distortion component, which could exactly forecast compensation signal of next period. The optimal control strategy was selected according to the principle of output signal approaching component to be compensated as near as possible. Before predicating each time the oldest data was eliminated while the latest data was added to data sequence. Then new predication model was established once again. The results show that the method can always construct mathematical model with variation of system parameters, reflect the latest state of system and not increase calculation quantity. The feasible and effective control strategy can improve power quality of coal mine power network.
文摘Calculations and analyses are made for the ultimate composition of 158 Chinese power coals. The results reveal that the carbon content on as received basis, Cr, increases linearly with the increase of the low heating value Qnot,a, on as received basis; the hydrogen content on as received basis, Hr, first increases with the increase of the volatile content on dry ash free basis Vdaf (Vdaf 〈 33.0%) and then decreases (Vdaf 〉 33.0%); the oxygen content on as received basis, Oar, increases linearly with the increase of Vau, ranging between 2.0% and 12.5%. By comparison, the nitrogen content on as received basis N of bituminous and lean coal is higher, while the sulfur content on as received basis Sar Of anthracite is higher than bituminous coal, lean coal and lignite. The hydrogen on as received basis Hr is important for the conversion between low heating value and high heating value on as received basis for Chinese power coals, and Sr is important for the calculation of high heating value from the oxygen bomb heat value for Chinese power coals.
基金the National Natural Science Foundation of China (No. 51107143)the Fundamental Research Funds for the Central Universities (No. 2010QNB33)
文摘An augmented proportional-integral sliding surface was designed for a sliding mode controller. A chatter free sliding mode control strategy for a chaotic coal mine power grid was developed. The stability of the control strategy was proven by Lyapunov stability theorem. The proposed sliding mode control strategy eliminated the chattering phenomenon by replacing the sign function with a saturation function, and by replacing the constant coefficients in the reaching law with adaptive ones. An immune genetic algorithm was used to optimize the parameters in the improved reaching law. The cut-in time of the controllers was optimized to reduce the peak energy of their output. Simulations showed that the proposed sliding mode controller has good, chatter flee performance.
基金supported by the National Natural Science Foundation of China(No.51274205)the State Key Laboratory for Coal Resources and Safe Mining,China University of Mining&Technology(No.SKLCRSM10KFB13)the Hebei Key Laboratory for Mine Disaster Prevention of China(No.KJZH2013K02)
文摘The micelle generating process of the sodium dodecyl sulfate(SDS) solution with the addition of chemical inhibitors was elucidated using phase separation model, and the descending order of the capacity for the selected chemical inhibitors to reduce the critical micelle concentrations of the solution are Mg Cl_2, Ca Cl_2,NH_4HCO_3 and NH_4Cl. The data to quantitatively describe the foam decay process, including foaming ratio,foam life and decay behaviors, was obtained by pressure measuring system. The results indicate that chemical inhibitors can improve the solution foamability. The capacity of the inhibitors to enhance the solution foamability is sorted as NH_4 Cl, NH_4HCO_3, Mg Cl2 and Ca Cl_2 which can distinctly improve the foam stability as well. The capacity of the inhibitors to enhance the SDS foam stability can be arranged as Mg Cl_2, NH_4 Cl, NH_4HCO_3 and Ca Cl_2. It is observed that the gravity drainage plays a leading role in the increase of proportion of diffusion drainage. The oxidation dynamic parameters of the coal samples treated by inhibition foams were investigated using thermal analysis technique, and their synergistic effects on inhibiting coal oxidation were explored.
文摘Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market price of power coal. The GCP (green coal power) is the power generated in coal-combustion with zero emission. The author indicates that it is possible to make coal-fired power plants emission free based on thermodynamic analysis and purposely designed experiments using SFG (simulated flue gases). It is concluded in the study that all SO_2 and NOx in the post-combustion flue gas are reduced to inoffensive substances at temperature lower than 750 ℃ when contacting carbon and elemental sulfur is separated in succeeded cooling of flue gas at temperatures 200-400 ℃, and the ultrafine dusts are trapped in condensed water at temperature blow 100 ℃. Based on chemical engineering expertise the author is sure that the cost for removing acid gases is much lower than any clean coal technologies known to today. Instead of capture, the remained CO_2 is converted to CO in the second time contact with carbon at 900-950 ℃. CO is the raw material of chemical synthesis and, thus, CO_2 is stored in chemical products such as methanol, fertilizer, plastics, etc. The simple and low-cost processing allows GCP utilized in practice easily.
基金the National Key Research and Development Program of China(No.2016YFB0601001)。
文摘In order to explore the changes in the growth and protein contents of Spirulina and obtain a proper strain for the fixation of carbon dioxide(CO2 from flue gas,the strains isolated from the Spirulina farms and the strain 208 were cultured under different aeration conditions including no CO2,10%CO2 and coal power plant flue gas supplements.The physiological indexes including filament length,biomass yield and chlorophyll a,soluble protein and phycocyanin contents were determined,respectively.When cultured without CO2 supplement,the strain 4-5 exhibited the highest biomass yield(1.880 g L^(−1)and a specific growth rate(0.367 d−1.However,the specific growth rate of all strains decreased significantly when they were cultured under 10%CO2 and unfiltered coal power plant flue gas supplements.Considerable differences were noted in the performance of the experimental microalgal strains under different contemporaneous conditions.The strain 7-8 achieved the highest biomass yield(1.603 g L^(−1)and relatively high phycocyanin content(7.1%)under 10%CO2 supplement.We noted that strain 4-5 had the highest specific growth rate(0.182 d−1 and biomass yield(0.43 g L^(−1)under coal power plant flue gas supplement.Strain 6-10 displayed the highest soluble protein content(66.02%),and strain 7-8 showed the highest phycocyanin content(9.28%)under coal power plant flue gas supplement.
文摘This paper introduces the situation of coal and power production, the tense supply of powercoal and deteriorated coal quality in 2004, analyzes the causes of tense supply of power and coal, one ofwhich is due to the government regulated power tariff against rapid escalation of coal price that powerenterprises can hardly afford. It also presents some policy proposals to relieve the contradiction betweencoal and power, including to intensify macroscopic regulation between industries and regions, solve theproblem of power coal transportation and reduction or exemption of tax on coal industry and circulationlinks, through secondary distribution to regulate profit difference among industries.
文摘At the beginning of 2008, the Central, East and South China suffered a rare snow and ice disaster. After the disaster, power generation and power grid enterprises faced a big problem of power coal supply.
文摘According to statistics, the average dust collection efficiency of flue gas emission in the large and medium- sized power plants in Zhejiang Province at present has attained higher than 97% which surpasses the 95% standard as stipulated by the Ministry of Electric Power. The dust collection efficiency of the Beilungang Power Plant has already attained 99.92%. In recent years, Zhejiang Electric Power Corporation has stipulated that all the newly constructed generating units shall be equipped with high efficiency electrostatic precipitator (ESP) while the existing power plants shall speed up their renovation work for their dust collectors. In combination with the fourth stage project of the Taizhou Power Plant, the improvement work of the dust
文摘The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and compared with that of the flyash from Taian Coal Fired Power Plant.The result shows that the flyash from coal refuse fired power plant is of better quality in making construction items,for being brighter in color,fine and high activity.Some ways of comprehensive utilization of the ash have been suggested in this paper.
文摘The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation
文摘This paper is based on the existing status and development prediction of Fujian power industry, and describes that the structure of energy sources for generating power which will mainly use coal, will not be changed in the 2010s and 2020s in Fujian Province. In order to meet the requirements of high efficiency and envirofimental protection, the usage of clean coal technologies for power generating will be an inevitable option and the technologies will occupy the important position in Fujian power industry. This paper puts forward the staged targets and measures of developing and utilizing clean coal technologies, suggests that all government depotments related should give support and guarantee in policies and conditions, and welcome technical and economic cooperation at home and abroad, which is good for co-development of both parties.
基金This work was supported by the National Key Research and Development Program of China[2016YFC0501101,2016YFC0503603].
文摘Introduction:The development of coal power base(CPB)poses a severe challenge to the soil.We conducted a soil survey in Xilinhot CPB,to evaluate and analyze the pollution characteristics,potential ecological risk,and sources of six heavy metals(As,Pb,Cu,Zn,Mn,and Cd)in soil by using Geo-accumulation index,revised Nemerow integrated pollution index(RNIPI),and potential ecological risk index(RI).Outcomes/other:The results showed that the pollution of Cd and As were dramatic.The mean of Cd and As were 1.11 mg·kg^(-1) and 25.13 mg·kg^(-1),which were 42.55 times and 4.41 times higher than its local background value.The Geo-accumulation indices showed the contamination degree of Cd was strong and As was moderate,and the status of Cu,Pb,Zn,and Mn were uncontaminated.Xilinhot was strongly contaminated based on its RNIPI and RI values.Discussion:The accumulations of As,Pb,and Cd were mainly associated with anthropogenic sources,including coal mining and combustion,and industrial exhaust emissions.Cu,Mn,and Zn were primarily originated from the parent material(natural sources).Conclusion:This study provides scientific basis and effective countermeasures for the prevention and control of soil pollution in surrounding areas of CPB.
基金Supported by the National Natural Science Foundation of China (71103135)the Fundamental Research Funds for the Central Universities
文摘In this study, the transportation and storage problems for regional power coal allocation planning are formulated as transportation and storage problems to realize the minimization of the regional transportation and storage cost. An effective optimiza- tion model is proposed to solve transportation and storage prob- lems for regional power coal allocation planning, which has inter- active effect on multiple participants, such as regional power plants, coal transportation companies, logistics centers, and coal storage centers. A case study illustrates that the model and algo- rithm are more reasonable compared with the classic transporta- tion model, and the sensitivity analysis improves transportation and storage strategies for regional power coal allocation planning. Results demonstrate that this model can not only satisfy more of the actual requirements of the integral system but also offer more information to the decision-makers (DMs) for reference in favor of exalting decision-making quality.
文摘Increased penetration of renewables for power generation has negatively impacted the dynamics of conventional fossil fuel-based power plants.The power plants operating on the base load are forced to cycle,to adjust to the fluctuating power demands.This results in an inefficient operation of the coal power plants,which leads up to higher operating losses.To overcome such operational challenge associated with cycling and to develop an optimal process control,this work analyzes a set of models for predicting power generation.Moreover,the power generation is intrinsically affected by the state of the power plant components,and therefore our model development also incorporates additional power plant process variables while forecasting the power generation.We present and compare multiple state-of-the-art forecasting data-driven methods for power generation to determine the most adequate and accurate model.We also develop an interpretable attention-based transformer model to explain the importance of process variables during training and forecasting.The trained deep neural network(DNN)LSTM model has good accuracy in predicting gross power generation under various prediction horizons with/without cycling events and outperforms the other models for long-term forecasting.The DNN memory-based models show significant superiority over other state-of-the-art machine learning models for short,medium and long range predictions.The transformer-based model with attention enhances the selection of historical data for multi-horizon forecasting,and also allows to interpret the significance of internal power plant components on the power generation.This newly gained insights can be used by operation engineers to anticipate and monitor the health of power plant equipment during high cycling periods.
基金RC,NH,DC,LC,HM acknowledge funding support from Bloomberg Philanthropies,USA and Climate Works Foundation,USAJH Yuan acknowledges the funding of National Natural Science Foundation of China(72173043)+1 种基金WJ Cai acknowledges the funding of National Natural Science Foundation of China(71773061)the GEIGC Science and Technology Project in the framework of the“Research on Comprehensive Path Evaluation Methods and Practical Models for the Synergetic Development of Global Energy,Atmospheric Environment and Human Health”(grant No.20210302007).
文摘As the world seeks to increase ambition rapidly to limit global warming to 1.5℃,joint leadership from the world's largest greenhouse gas(GHG)emitters-the United States(U.S.)and China-will be critical to deliver significant emissions reductions from their own countries as well as to catalyze increased international action.After a period of uncertainty in international climate policy,these countries now both have current leadership that supports ambitious climate action.In this context,a feasible,high-impact,and potentially globally catalytic agreement by the U.S.and China to transition away from coal to clean energy would be a major contribution toward this global effort.We undertake a plant-by-plant assessment in the power sector to identify practical coal retirement pathways for each country that are in line with national priorities and the global 1.5℃ target.Our plant-by-plant analysis shows that the 1.5℃-compatible pathways may result in an average retirement age of 47 years for the U.S.coal plants and 22 years for Chinese coal plants,raising important questions of how to compare broader economic,employment,and social impacts.We also demonstrate that such pathways would also lead to significant emissions reductions,lowering overall global energy-related CO_(2) emissions by about 9%in 2030 relative to 2020.A catalytic effect from the possibility of other countries taking compatible actions is estimated to reduce global emissions by 5.1 Gt CO_(2) in 2030 and by 10.1 Gt CO_(2) in 2045.
文摘In accordance with the experience withSynchronous construction of coal mine andpower plant in Yongxia mining area, thispaper discusses the existing issues regardingmine mouth power plant including capital,power grid connection, electricity price for gridconnection, installed capacity generation setselection as well as self- protection of coalindustry. It is regarded that under marketeconomy as long as the benefits of the threesectors of coal, electricity and the local arecomprehensively considered, a suitable waycan be arrived for conl industry to operate electricity business.