This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the...This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.展开更多
The effect of Eu-substitution on the density and thermoelectric properties of ternary sulfide Ce3-xEuxS4 (0≤x≤0.8) compacts was investigated. Ce3-xEuxS4 powders were prepared via the sulfurization of the oxide usi...The effect of Eu-substitution on the density and thermoelectric properties of ternary sulfide Ce3-xEuxS4 (0≤x≤0.8) compacts was investigated. Ce3-xEuxS4 powders were prepared via the sulfurization of the oxide using CS2 gas at 1473 K. The pressureless sintered Ce3-xEuxS4 compacts in the atmosphere were crystallized in the T-phase. The density of the Ce3-xEuxS4 compacts increased with the increasing of Eu-substitution. Eu-substitution yielded a higher Seebeck coefficient and lower electrical resistivity. The highest value of the thermoelectric power factor of 1.41×10^-4 W/K^2m was obtained for the Ce2.2Eu0.8S4 compact at 673 K. It indicated that Eu-substitution was effective for improving thermoelectric properties of Ce3-xEuxS4.展开更多
In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correcti...In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.展开更多
The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the t...The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.展开更多
In this paper we report a kind of fast-scale instability occurring in the single-ended primary inductance converter (SEPIC) power factor pre-regulator, which is designed to operate in discontinuous conduction mode. ...In this paper we report a kind of fast-scale instability occurring in the single-ended primary inductance converter (SEPIC) power factor pre-regulator, which is designed to operate in discontinuous conduction mode. Main results are given by exact cycle-by-cycle computer simulations as well as theoretical analysis. It is found that the instability phenomenon manifests itself as a fast-scale bifurcation at the switching period, which implies the occurrence of border collision bifurcation, or is related to the transition of the regular operating mode of the SEPIC. According to the theoretical analysis and simulation results, the effects of parameters on system stability, and the locations of the bifurcation points are confirmed. Moreover, the effects of such an instability on power factor and switching stress are also discussed. Finally, the occurrence of the asymmetric bifurcation locations is investigated. The results show that this work provides a convenient means of predicting stability boundaries which can facilitate the selection of the practical parameters.展开更多
A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal i...A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method.展开更多
A novel inverter power source is developed characterized with constant output current and unit power factor input. Digital signal processor ( DSP ) is used to realize power factor correction and control of back-stag...A novel inverter power source is developed characterized with constant output current and unit power factor input. Digital signal processor ( DSP ) is used to realize power factor correction and control of back-stage inverter bridge of the arc welding inverter. The fore-stage adopts double closed loop proportion and integration (PI) rectifier technique and the back- stage adopts digital pulse width modulation ( PWM) technique. Simulated waves can be obtained in Matlab/Simulink and validated by experiments. Experiments of the prototype showed that the total harmonic distortion (THD) can be controlled within 10% and the power factor is approximate to 1.展开更多
A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
The effects of hot pressing on electric performance and mechanical strength of Bi_(0.5)Sb_(1.5)Te_(3) thermoelectric material prepared through vacuum melting and milling were studied.The phase constituent and microstr...The effects of hot pressing on electric performance and mechanical strength of Bi_(0.5)Sb_(1.5)Te_(3) thermoelectric material prepared through vacuum melting and milling were studied.The phase constituent and microstructure were analyzed by X-ray Diffraction and cold field emission Scanning Electric Microscope.Aeolotropisms of the material on microstructure and electric performances are approved.With the rise of hot pressing temperature(from 300-500℃)and pressure(30-70 MPa),electric conductivity and power factor are improved.Moreover,Bi_(0.5)Sb_(1.5)Te_(3) material can gain ideal thermoelectric performances and increased mechanical strength by hot pressing.展开更多
This paper presents a novel current feedforward control strategy for a three-phase pulse-width modulation (PWM) DC voltage-type converter based on phase and amplitude control (PAC). With right-angle triangle relation ...This paper presents a novel current feedforward control strategy for a three-phase pulse-width modulation (PWM) DC voltage-type converter based on phase and amplitude control (PAC). With right-angle triangle relation of phasors and principle of conservation of energy, a phasor adjustment method and the relevant low-frequency mathematical model of the system are analyzed in detail, both in rectification and regeneration modes for the converter, are discussed. For improving the traditional PAC dynamic performance, variable load current is detected indirectly by the change of the DC voltage, which is fed to the control system as an additional control variable to generate modulation index and phase angle. Also, the algorithm is derived and the system principle is introduced. Experimental results from a 3 kw laboratory device are included to demonstrate the effectiveness of the proposed control strategy.展开更多
Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far, extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both hig...Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far, extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 mW.m 1 .K-2 at room temperature and remains non-saturated up to 400 K. Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials.展开更多
This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase perm...This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase permanent magnet synchronous motor(PMSM)propulsion system as a three-channel boost-type converter in which only a contactor and a small diode bridge are added.First,the operation scenario of the EDROC is introduced.Second,the relationship between electromagnetic torque and rotor position is investigated.Third,the current ripple cancellation of the EDROC is discussed in detail.Moreover,to implement the single-phase APFC along with charging voltage/current regulation of propulsion battery,control strategies including current balancing and synchronous/interleaving PWM strategies are incorporated.Finally,200W proof-of-concept prototype-based tests are conducted under different operation scenarios.展开更多
In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with ...In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.展开更多
When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor...When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.展开更多
This paper proposes a novel implementation strategy for soft switching PFC whose circuit is simple and can achieve low voltage output directly. The main circuit adopts current mode full-bridge converter and all the po...This paper proposes a novel implementation strategy for soft switching PFC whose circuit is simple and can achieve low voltage output directly. The main circuit adopts current mode full-bridge converter and all the power switches can realize ZCS or ZVS in the way of phase-shlfted control, using the leakage inductance of the transformer, the junction capacitor of the switches and the stored energy of the output capacitor. The problems such as the function of phase-shlfted link in control circuit, the implementation conditions of soft switching and bias restrained are analyzed. The adoption of constant frequency PWM control makes the design of the input and output filter link and the high frequency transformer simple. The transformation ratio regulation so as to achieve low voltage output and electrical insulation can be realized by using high frequency transformer.展开更多
In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. T...In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.展开更多
The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load...The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load reaction to supply voltage alteration and random process of load alteration Basically, there is no any universal method that can single out the inherent static load model from experimental data. The paper offers a proprietary technique which is the particular solution of the task. The technique considers the selection of neighboring measurement pairs with the supply voltage altering significantly be-tween them, the exclusion of selected pairs by load power factor and subsequent selection of the inherent static load model presented as the polynomial load model. The usage of the technique to identify static load model at “Fenster” industrial enterprise (in Borisov city) is presented. The ideas considered in the paper can be used for future development of static load model identification methods with the data obtained during both active experiment and in other operating models of electric power systems.展开更多
With the use of this novel average model for Single Stage Flyback PFC+Flyback DC/DC converter, voltage control mode, peak current control mode and average current control mode can be simulated easily by changing the m...With the use of this novel average model for Single Stage Flyback PFC+Flyback DC/DC converter, voltage control mode, peak current control mode and average current control mode can be simulated easily by changing the model's parameters. It can be used to do various analysis not only for small signal and static behavior but also for large signal and dynamic behavior of the converter. By using this average model the simulation speed can be improved by 2 orders of magnitude above that obtained by using the conventional switched model. It can be applied to optimize the trade\|off between high power factor, voltage stress, current stress and good output performance while designing this kind of single stage PFC converter. A 60W single stage power factor corrector was built to verify the proposed model. The modeling principle can be applied to other Single Stage PFC topologies.展开更多
An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change...An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change in system parameters and affects individual phase correction by applying the exact amount of reactive components needed for each phase, and can also reduce negative sequence current caused by the load to improve system balance. An optimization criterion is used for the proper calculation of reactive power steps in a power compensation installation of capacitor banks. The criterion is enabled by sampling measurements performed on the electrical plant examined within specific interval of time.展开更多
Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A nov...Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A novel type of cylindrical,non-overlapping,transverse-flux,and permanent-magnet linear motor(TFPLM) is investigated,furthermore,a high power factor and less process complexity structure research is developed.The impact of magnetic leakage factor on power factor is discussed,by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM,an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor.The relation between power factor and structure parameter is investigated,and a structure parameter optimization method is proposed taking power factor maximum as a goal.At last,the test bench is founded,starting experimental and generating experimental are performed,and a good agreement of simulation and experimental is achieved.The power factor is improved and the process complexity is decreased.This research provides the instruction to design high-power factor permanent-magnet linear generator.展开更多
文摘This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.
基金supported by the National Natural Science Foundation of China (20501023)the National "863" Project Foundation of China (2004AA001340)the Nature Science Foundation of Guangdong for Doctorial Training base (5300527)
文摘The effect of Eu-substitution on the density and thermoelectric properties of ternary sulfide Ce3-xEuxS4 (0≤x≤0.8) compacts was investigated. Ce3-xEuxS4 powders were prepared via the sulfurization of the oxide using CS2 gas at 1473 K. The pressureless sintered Ce3-xEuxS4 compacts in the atmosphere were crystallized in the T-phase. The density of the Ce3-xEuxS4 compacts increased with the increasing of Eu-substitution. Eu-substitution yielded a higher Seebeck coefficient and lower electrical resistivity. The highest value of the thermoelectric power factor of 1.41×10^-4 W/K^2m was obtained for the Ce2.2Eu0.8S4 compact at 673 K. It indicated that Eu-substitution was effective for improving thermoelectric properties of Ce3-xEuxS4.
基金supported by the National Natural Science Foundation of China (Grant No.51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100201120028)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No.EIPE10303)
文摘In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.
文摘The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.
文摘In this paper we report a kind of fast-scale instability occurring in the single-ended primary inductance converter (SEPIC) power factor pre-regulator, which is designed to operate in discontinuous conduction mode. Main results are given by exact cycle-by-cycle computer simulations as well as theoretical analysis. It is found that the instability phenomenon manifests itself as a fast-scale bifurcation at the switching period, which implies the occurrence of border collision bifurcation, or is related to the transition of the regular operating mode of the SEPIC. According to the theoretical analysis and simulation results, the effects of parameters on system stability, and the locations of the bifurcation points are confirmed. Moreover, the effects of such an instability on power factor and switching stress are also discussed. Finally, the occurrence of the asymmetric bifurcation locations is investigated. The results show that this work provides a convenient means of predicting stability boundaries which can facilitate the selection of the practical parameters.
文摘A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method.
文摘A novel inverter power source is developed characterized with constant output current and unit power factor input. Digital signal processor ( DSP ) is used to realize power factor correction and control of back-stage inverter bridge of the arc welding inverter. The fore-stage adopts double closed loop proportion and integration (PI) rectifier technique and the back- stage adopts digital pulse width modulation ( PWM) technique. Simulated waves can be obtained in Matlab/Simulink and validated by experiments. Experiments of the prototype showed that the total harmonic distortion (THD) can be controlled within 10% and the power factor is approximate to 1.
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
文摘The effects of hot pressing on electric performance and mechanical strength of Bi_(0.5)Sb_(1.5)Te_(3) thermoelectric material prepared through vacuum melting and milling were studied.The phase constituent and microstructure were analyzed by X-ray Diffraction and cold field emission Scanning Electric Microscope.Aeolotropisms of the material on microstructure and electric performances are approved.With the rise of hot pressing temperature(from 300-500℃)and pressure(30-70 MPa),electric conductivity and power factor are improved.Moreover,Bi_(0.5)Sb_(1.5)Te_(3) material can gain ideal thermoelectric performances and increased mechanical strength by hot pressing.
文摘This paper presents a novel current feedforward control strategy for a three-phase pulse-width modulation (PWM) DC voltage-type converter based on phase and amplitude control (PAC). With right-angle triangle relation of phasors and principle of conservation of energy, a phasor adjustment method and the relevant low-frequency mathematical model of the system are analyzed in detail, both in rectification and regeneration modes for the converter, are discussed. For improving the traditional PAC dynamic performance, variable load current is detected indirectly by the change of the DC voltage, which is fed to the control system as an additional control variable to generate modulation index and phase angle. Also, the algorithm is derived and the system principle is introduced. Experimental results from a 3 kw laboratory device are included to demonstrate the effectiveness of the proposed control strategy.
基金supported by the National Young 1000 Talent Plan Chinathe Pujiang Talent Plan in Shanghai,China+2 种基金the National Natural Science Foundation of China(Grant Nos.61322407 and 11474058)the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China(Grant No.J1103204)the National Basic Research Program of China(Grant No.2011CB921803)
文摘Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far, extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 mW.m 1 .K-2 at room temperature and remains non-saturated up to 400 K. Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials.
基金This work was supported in part by the National Natural Science Foundation of China(51807098,61673226)and the Six Talent Peaks Project in Jiangsu Province(2015-JY-028).
文摘This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase permanent magnet synchronous motor(PMSM)propulsion system as a three-channel boost-type converter in which only a contactor and a small diode bridge are added.First,the operation scenario of the EDROC is introduced.Second,the relationship between electromagnetic torque and rotor position is investigated.Third,the current ripple cancellation of the EDROC is discussed in detail.Moreover,to implement the single-phase APFC along with charging voltage/current regulation of propulsion battery,control strategies including current balancing and synchronous/interleaving PWM strategies are incorporated.Finally,200W proof-of-concept prototype-based tests are conducted under different operation scenarios.
基金Project(50876116) supported by the National Natural Science Foundation of ChinaProject(2007CK3077) supported by Innovative Program of Hunan Science and Technology AgencyProject(1343-77225) supported by the Graduate School of Central South University
文摘In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.
基金Supported by the National Basic Research Program of China("973"Program,No.2009CB219700)
文摘When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.
基金Sponsored by the Power Electronics Science and Education Development Program of Delta Environmental & Educational Foundation ( Grant No.DREO2006010).
文摘This paper proposes a novel implementation strategy for soft switching PFC whose circuit is simple and can achieve low voltage output directly. The main circuit adopts current mode full-bridge converter and all the power switches can realize ZCS or ZVS in the way of phase-shlfted control, using the leakage inductance of the transformer, the junction capacitor of the switches and the stored energy of the output capacitor. The problems such as the function of phase-shlfted link in control circuit, the implementation conditions of soft switching and bias restrained are analyzed. The adoption of constant frequency PWM control makes the design of the input and output filter link and the high frequency transformer simple. The transformation ratio regulation so as to achieve low voltage output and electrical insulation can be realized by using high frequency transformer.
基金supported by Delta Power Electronic Science and Education Development in 2007 (Grant No.DRES2007002)
文摘In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.
文摘The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load reaction to supply voltage alteration and random process of load alteration Basically, there is no any universal method that can single out the inherent static load model from experimental data. The paper offers a proprietary technique which is the particular solution of the task. The technique considers the selection of neighboring measurement pairs with the supply voltage altering significantly be-tween them, the exclusion of selected pairs by load power factor and subsequent selection of the inherent static load model presented as the polynomial load model. The usage of the technique to identify static load model at “Fenster” industrial enterprise (in Borisov city) is presented. The ideas considered in the paper can be used for future development of static load model identification methods with the data obtained during both active experiment and in other operating models of electric power systems.
文摘With the use of this novel average model for Single Stage Flyback PFC+Flyback DC/DC converter, voltage control mode, peak current control mode and average current control mode can be simulated easily by changing the model's parameters. It can be used to do various analysis not only for small signal and static behavior but also for large signal and dynamic behavior of the converter. By using this average model the simulation speed can be improved by 2 orders of magnitude above that obtained by using the conventional switched model. It can be applied to optimize the trade\|off between high power factor, voltage stress, current stress and good output performance while designing this kind of single stage PFC converter. A 60W single stage power factor corrector was built to verify the proposed model. The modeling principle can be applied to other Single Stage PFC topologies.
文摘An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change in system parameters and affects individual phase correction by applying the exact amount of reactive components needed for each phase, and can also reduce negative sequence current caused by the load to improve system balance. An optimization criterion is used for the proper calculation of reactive power steps in a power compensation installation of capacitor banks. The criterion is enabled by sampling measurements performed on the electrical plant examined within specific interval of time.
基金Supported by National Natural Science Foundation of China(Grant No.50877013)
文摘Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A novel type of cylindrical,non-overlapping,transverse-flux,and permanent-magnet linear motor(TFPLM) is investigated,furthermore,a high power factor and less process complexity structure research is developed.The impact of magnetic leakage factor on power factor is discussed,by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM,an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor.The relation between power factor and structure parameter is investigated,and a structure parameter optimization method is proposed taking power factor maximum as a goal.At last,the test bench is founded,starting experimental and generating experimental are performed,and a good agreement of simulation and experimental is achieved.The power factor is improved and the process complexity is decreased.This research provides the instruction to design high-power factor permanent-magnet linear generator.