To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm...To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm width were exposed to four different environmental conditions at different exposure times in order to determine the effect of temperature and water availability on the self-healing potential.After the exposure,the control and tested concrete cubes were evaluated for regained strength,void reduction,corrosion inhibition,damp proofing,relative impermeability and durability.The samples with SF10CA have better cementitious filling and low percentage of voids and water absorption.展开更多
This article presents a study on the resistance to chloride penetration, corrosion, porosity, and strength of mortar containing fine fly ash (FA), ground rice husk-bark ash (RB), and ground bagasse ash (BA). Ord...This article presents a study on the resistance to chloride penetration, corrosion, porosity, and strength of mortar containing fine fly ash (FA), ground rice husk-bark ash (RB), and ground bagasse ash (BA). Ordinary Portland cement (CT) was blended with a single pozzolan and two pozzolans. Strength, porosity, rapid chloride penetration, immersion, and corrosion tests were performed to characterize the mortar. Test results showed that the use of ternary blends of CT, FA, and RB or BA decreased the porosity of the mortar, as compared with binary blended mortar containing CT and RB or BA. The resistance to chloride penetration of the mortar improved substantially with partial replacement of CT with FA, RB, and BA. The use of ternary blends of CT, FA and RB or BA produced the mortar with good strength and resistance to chloride penetration. The resistance to chloride penetration was higher with an increase in the replacement level due to the reduced calcium hydroxide.展开更多
文摘To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm width were exposed to four different environmental conditions at different exposure times in order to determine the effect of temperature and water availability on the self-healing potential.After the exposure,the control and tested concrete cubes were evaluated for regained strength,void reduction,corrosion inhibition,damp proofing,relative impermeability and durability.The samples with SF10CA have better cementitious filling and low percentage of voids and water absorption.
基金financially supported by the Office of the National Research Council of Thailand (NRCT)Higher Education Research Promotion and National Research University Project of Thailand+2 种基金Office of the Higher Education Commission,through the Advanced Functional Materials Cluster of Khon Kaen Universitythe Thailand Research Fund (TRF) under the TRF Senior Research Scholar Contract No. RTA5480004Rajamangala University of Technology Phra Nakhon (RMUTP)
文摘This article presents a study on the resistance to chloride penetration, corrosion, porosity, and strength of mortar containing fine fly ash (FA), ground rice husk-bark ash (RB), and ground bagasse ash (BA). Ordinary Portland cement (CT) was blended with a single pozzolan and two pozzolans. Strength, porosity, rapid chloride penetration, immersion, and corrosion tests were performed to characterize the mortar. Test results showed that the use of ternary blends of CT, FA, and RB or BA decreased the porosity of the mortar, as compared with binary blended mortar containing CT and RB or BA. The resistance to chloride penetration of the mortar improved substantially with partial replacement of CT with FA, RB, and BA. The use of ternary blends of CT, FA and RB or BA produced the mortar with good strength and resistance to chloride penetration. The resistance to chloride penetration was higher with an increase in the replacement level due to the reduced calcium hydroxide.