The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for...The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for interfacial stabilization are particularly indistinct. Herein, the effect of various sulfur-containing components in SEI for stabilizing lithium metal anodes is disclosed in lithium–sulfur batteries. High-valence sulfur-containing species(Li_(2)SO_(3) and Li_(2)SO_(4)) in SEI are conducive to uniform lithium deposition and stabilizing lithium metal anodes. In contrast, low-valence sulfur-containing species(Li_(2)S_(3) and Li_(2)S_(4)) in SEI result in aggressive lithium dendrites and dead lithium. This work identifies the role of sulfurcontaining components in SEI for stabilizing lithium metal anodes and provides rational design principles of SEI for protecting lithium metal anodes in practical lithium–sulfur batteries.展开更多
基金supported by the Beijing Municipal Natural Science Foundation (Z20J00043)the National Natural Science Foundation of China (22061132002, 21825501)+4 种基金the China Postdoctoral Science Foundation (2021M700404)the Seed Fund of Shanxi Research Institute for Clean Energy (SXKYJF015)the Beijing Municipal Natural Science Foundation (JQ20004, L182021)the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for interfacial stabilization are particularly indistinct. Herein, the effect of various sulfur-containing components in SEI for stabilizing lithium metal anodes is disclosed in lithium–sulfur batteries. High-valence sulfur-containing species(Li_(2)SO_(3) and Li_(2)SO_(4)) in SEI are conducive to uniform lithium deposition and stabilizing lithium metal anodes. In contrast, low-valence sulfur-containing species(Li_(2)S_(3) and Li_(2)S_(4)) in SEI result in aggressive lithium dendrites and dead lithium. This work identifies the role of sulfurcontaining components in SEI for stabilizing lithium metal anodes and provides rational design principles of SEI for protecting lithium metal anodes in practical lithium–sulfur batteries.