The hydrologic model HEC-HMS (Hydrologic Engineering Center, Hydrologic Modeling System), used in combination with the Geospatial Hydrologic Modeling Extension, HEC-GeoHMS, is not a site-specific hydrologic model. A...The hydrologic model HEC-HMS (Hydrologic Engineering Center, Hydrologic Modeling System), used in combination with the Geospatial Hydrologic Modeling Extension, HEC-GeoHMS, is not a site-specific hydrologic model. Although China has seen the applications of many hydrologic and hydraulic models, HEC-HMS is seldom applied in China, and where it is applied, it is not applied holistically. This paper presents a holistic application of HEC-HMS. Its applicability, capability and suitability for flood forecasting in catchments were examined. The DEMs (digital elevation models) of the study areas were processed using HEC-GeoHMS, an ArcView GIS extension for catchment delineation, terrain pre-processing, and basin processing. The model was calibrated and verified using historical observed data. The determination coefficients and coefficients of agreement for all the flood events were above 0.9, and the relative errors in peak discharges were all within the acceptable range.展开更多
文摘The hydrologic model HEC-HMS (Hydrologic Engineering Center, Hydrologic Modeling System), used in combination with the Geospatial Hydrologic Modeling Extension, HEC-GeoHMS, is not a site-specific hydrologic model. Although China has seen the applications of many hydrologic and hydraulic models, HEC-HMS is seldom applied in China, and where it is applied, it is not applied holistically. This paper presents a holistic application of HEC-HMS. Its applicability, capability and suitability for flood forecasting in catchments were examined. The DEMs (digital elevation models) of the study areas were processed using HEC-GeoHMS, an ArcView GIS extension for catchment delineation, terrain pre-processing, and basin processing. The model was calibrated and verified using historical observed data. The determination coefficients and coefficients of agreement for all the flood events were above 0.9, and the relative errors in peak discharges were all within the acceptable range.