As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-hel...As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-helix structure connected by hydrogen bonds cannot resist the mechanical environment of strong stress,XG shows poor shear resistance.In this study,a polymer gel with interpenetrating polymer network structure was prepared by esterifying XG,taking polystyrene maleic anhydride(SMA)as the modifier.In addition to retaining the excellent rheological properties of XG,the generated polymer gel also exhibited high shear resistance.The optimal addition amount of the esterification reaction modifier was determined as mXG:mSMA=5:3 according to the gel ink standard.With this amount,the viscosity of the modified xanthan gum(SXG)gel increased to 1578.8 mPa·s and 100.7 mPa·s at shear rates of 4 s1 and 383 s1,respectively,and the shear resistance increased more than 2 times compared to the unmodified one.It is because of the ester bond formed by esterification that the reaction strengthens the interaction between molecular segments,enabling the new gel to resist to strong mechanical stress.The new polymer gel studied in this paper and the proposed mechanism of action provide new insights for the development of high-end gel ink and also provide theoretical support for the study of rheological properties of non-Newtonian fluids.展开更多
Glycerol monolaurate(GML)is a widely used industrial chemical with excellent emulsification and antibacterial effect.The direct esterification of glycerol with lauric acid is the main method to synthesize GML.In this ...Glycerol monolaurate(GML)is a widely used industrial chemical with excellent emulsification and antibacterial effect.The direct esterification of glycerol with lauric acid is the main method to synthesize GML.In this work,the kinetic process of direct esterification was systematically studied using p-toluenesulfonic acid as catalyst.A complete kinetic model of consecutive esterification reaction has been established,and the kinetic equation of acid catalysis was deduced.The isomerization reactions of GML and glycerol dilaurate were investigated.It was found that the reaction was an equilibrium reaction and the reaction rate was faster than the esterification reaction.The kinetic equations of the consecutive esterification reaction were obtained by experiments as k_(1)=(276+92261Xcat)exp(-37720/RT)and k_(2)=(80+4413Xcat)exp(-32240/RT).The kinetic results are beneficial to the optimization of operating conditions and reactor design in GML production process.展开更多
Gatifloxacin (GFX) is a kind of chiral fluoroquinolones compound due to the methyl group at the C-3 position of the piperazine ring[1]. Although the enantiomers of GFX show similar levels of antimicrobial activity a...Gatifloxacin (GFX) is a kind of chiral fluoroquinolones compound due to the methyl group at the C-3 position of the piperazine ring[1]. Although the enantiomers of GFX show similar levels of antimicrobial activity and pharmacokinetics[2], the other biological activities (i.e., toxicity or enantioselective recognition to various receptors in vivo) of GFX enantiomers have not yet been studied. With this in mind, we developed a rapid and cost-effective high performance liquid chromatographic (HPLC) separation procedure for GFX enantiomers with a pre-column esterification strategy.展开更多
There were various problems in the determination of oil acid value of the national standard method, and this paper developed a low cost, simple and effective way to determine the acid value of oil and grease. Furtherm...There were various problems in the determination of oil acid value of the national standard method, and this paper developed a low cost, simple and effective way to determine the acid value of oil and grease. Furthermore, the esterification of high acid Euphorbia lathyris L. oil (ELO) with methanol could be efficiently catalyzed by hydrochloric acid to produce biodiesel, and the influencing factors such as the amount of catalyst, reaction time, reaction temperature and molar ratio of oil to methanol were also studied. Under the optimized conditions with the oil to methanol molar ratio of 1:30 and a reaction temperature of 70℃, 95.8% oil conversion was obtained within 40 min in the presence of only 2.0 wt% of catalyst. Therefore, the low-cost non-edible Euphorbia lathyris L. oil as a raw material had good potential for the synthesis of biodiesel in industry.展开更多
Non edible oil sources have the potential to lower the cost of biodiesel. However, they usually contain significant high amounts of free fatty acids (FFA) that make them inadequate for direct base catalyzed transester...Non edible oil sources have the potential to lower the cost of biodiesel. However, they usually contain significant high amounts of free fatty acids (FFA) that make them inadequate for direct base catalyzed transesterification reaction (where the FFA content should be lower than 3%). The present work reviews chemical re-esterification as a possible method for the pre-treatment of high FFA feedstock for biodiesel production. The effects of temperature, amount of glycerol, type and amount of catalyst have been discussed. Chemical re-esterification lowers FFA to acceptable levels for transesterification at the same time utilizing the glycerol by product from the same process. Further researches have been proposed as a way forward to improve the process kinetics and optimization so as to make it more economical.展开更多
A carbon solid acid catalyst was prepared by the sulfonation of partially carbonized peanut shell with concentrated H2SO4. The structure and acidity of the catalyst were characterized by Fourier transform infrared spe...A carbon solid acid catalyst was prepared by the sulfonation of partially carbonized peanut shell with concentrated H2SO4. The structure and acidity of the catalyst were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and elemental analysis, which showed that it was an amorphous carbon material composed of aromatic carbon sheets in random orientations. Sulfonic acid groups were present on the surface at a density of 0.81 mmol/g. The carbon solid acid catalyst showed better performance than HZSM‐5 for the esterification of cyclohexene with formic acid. At a3:1 molar ratio of formic acid to cyclohexene, catalyst loading of 0.07 g/mL of cyclohexene, and reaction time of 1 h at 413 K, the cyclohexene conversion was 88.4% with 97.3% selectivity to cyclohexyl formate. The carbon solid acid catalyst showed better reusability than HZSM‐5 because its large pores were minimally affected by the accumulation of oligomerized cyclohexene, which deactivated HZSM‐5. The activity of the carbon solid acid catalyst decreased somewhat in the first two recycles due to the leaching of polycyclic aromatic hydrocarbon containing –SO3H groups and then it remained constant in the following reuse.展开更多
Fhnctionalized ionic liquid samples (bmim-PW12) were synthesized by 1-butyl-3-methyl- imidazolium bromide (bmimBr) and 12-phosphotungstic heteropolyacid (PW12). The samples were annealed at 100-450 ℃ and were c...Fhnctionalized ionic liquid samples (bmim-PW12) were synthesized by 1-butyl-3-methyl- imidazolium bromide (bmimBr) and 12-phosphotungstic heteropolyacid (PW12). The samples were annealed at 100-450 ℃ and were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermal gravity-DTG, brunauer emmett teller, and NHa-temperature programmed desorption. The results showed that the bmim-PW12 samples were crystal and maintained intact Keggin structure. The organic parts of those samples were partly decomposed at a temperature more than 350 ℃. The sample annealed at 400 ℃ exhibited nano-porous structure, strong acidity, and excellent catalytic activity on the esterification of n-butanol with acetic acid. The higher ester yield was obtained when the mass ratio of catalyst over the reactants amount was 5% for bmim-PW12 catalyst annealed at 400 ℃.展开更多
From both fundamental and practical perspectives, the production of chemicals from biomass re-sources using high-efficiency non-precious metal catalysts is important. However, many processes require addition of stoic...From both fundamental and practical perspectives, the production of chemicals from biomass re-sources using high-efficiency non-precious metal catalysts is important. However, many processes require addition of stoichiometric or excess quantities of base, which leads to high energy consump-tion, leaching problems, and side reactions. In this study, we investigated the high-efficiency oxida-tive esterification of furfural to methylfuroate by molecular oxygen with a Co-N-C/MgO catalyst. The catalyst was prepared by direct pyrolysis of a cobalt(Ⅱ) phenanthroline complex on MgO at 800℃ under N2 atmosphere. From furfural, 93.0% conversion and 98.5% selectivity toward methylfuroate were achieved under 0.5 MPa O2 with reaction at 100 ℃ for 12 h without a basic additive. The con-version and selectivity were much higher than those obtained with cobalt catalysts produced by pyrolysis of a cobalt(Ⅱ) phenanthroline complex on activated carbon or typical basic supports, in-cluding NaX, NaY, and CaO. X-ray photoelectron spectroscopy, X-ray diffraction, transmission elec-tron microscopy, and experimental results revealed that the high efficiency of Co-N-C/MgO for pro-duction of methylfuroate was closely related to the cobalt-nitrogen-doped carbon species and its catalytic ability in hydrogen abstraction. In contrast, Co-N-C(HCl) that synthesized by removing MgO with HCl from Co-N-C/MgO, as the catalyst produced mainly an acetal as a condensation prod-uct, and chloride ions had a negative effect on the oxidative esterification. Although the catalytic performance of the cobalt-nitrogen-doped carbon species was greatly affected by HCl treatment, it could be recovered to a great extent by addition of MgO. Moreover, changes in the oxygen pressure hardly affected the oxidative esterification of furfural with Co-N-C/MgO. This study not only pro-vides an effective approach to prepare methylfuroate, but also for designing high-performance non-precious metal catalysts for the oxidative esterification of biomass-derived compounds.展开更多
An efficient esterification of ferrocenecarboxylic acid with substituted phenols has been achieved using DCC / DMAP protocol in ionic liquids. The corresponding esters are produced in high yields.
La-SO42-/SBA-15 was synthesized with various amounts of lanthanum via incipient-wetness impregnation. Characterization was done by X-ray diffraction(XRD), transmission electron micrographs(TEM), nitrogen adsorptio...La-SO42-/SBA-15 was synthesized with various amounts of lanthanum via incipient-wetness impregnation. Characterization was done by X-ray diffraction(XRD), transmission electron micrographs(TEM), nitrogen adsorption, FTIR spectroscopic analysis, thermogravimetric analysis, and the total amount of acidity of catalyst was estimated by TPD of NH3. The results indicate that lanthanum has been incorporated into SBA-15 molecular sieve. The prepared materials(La-SO42-/SBA-15) keep the highly ordered mesoporous two-dimensional hexagonal structure and do not change the mesoporous channel structure of the support SBA-15. The catalyst showed best catalytic activity in the synthesis of n-butyl acetate. The optimum conditions of the esterification by orthogonal experiments were studied: the molar ratio of n-butanol to acetic acid 1:1.2, the amount of catalyst 7.5%, reaction time 80 min. The yield of n-butyl acetate could reach 93.2% under the optimum conditions. The catalyst was recyclable, cost effective and environmental friendly.展开更多
Novel Mg O–SBA-15 supported catalysts were prepared for oxidative esterification of methacrolein(MAL) with methanol to methyl methacrylate(MMA). The Mg O–SBA-15 supports were synthesized with different magnesia load...Novel Mg O–SBA-15 supported catalysts were prepared for oxidative esterification of methacrolein(MAL) with methanol to methyl methacrylate(MMA). The Mg O–SBA-15 supports were synthesized with different magnesia loadings from different magnesium precursors and hydrochloric acid molar concentrations. The Mg O–SBA-15 supports and Pd–Pb/Mg O–SBA-15 catalysts were characterized by several analysis methods. The results revealed that the addition of Mg O improved the ordered structure of SBA-15 supports and provided surface alkalinity of SBA-15 supports. The average size of the Pd3 Pb particles on magnesia-modified Pd–Pb/Mg O–SBA-15 catalysts was smaller than that on the pure silica-based Pd–Pb/SBA-15 catalysts. The experiments on catalyst performance showed that the magnesia-modified Pd–Pb/Mg O–SBA-15 catalysts had higher activity than pure silica-based Pd–Pb/SBA-15 catalysts, showing the strong dependence of catalytic activity on the average size of active particles. The difference of activity between Pd–Pb/SBA-15 catalysts and Pd–Pb/Mg O–SBA-15 catalysts was due to the discrepant structural properties and surface alkalinity provided by Mg O, which led to the different Pd3 Pb particle sizes and then resulted in the different number of active sites. Besides magnesia loadings, other factors, such as hydrochloric acid molar concentration and magnesium precursors, had considerable influences on the catalytic activity.展开更多
In this work, a series of SO4^2-/TiO2/γ-Al2O3 solid acid catalysts were synthesized by impregnation method, in which nano-TiO2 was prepared by sol–gel method, and then the nano-TiO2 sol was loaded on porous γ-Al2O3...In this work, a series of SO4^2-/TiO2/γ-Al2O3 solid acid catalysts were synthesized by impregnation method, in which nano-TiO2 was prepared by sol–gel method, and then the nano-TiO2 sol was loaded on porous γ-Al2O3 supporter through impregnation. The structure and property of catalyst were characterized by XRD, N2-BET,SEM, TEM, XPS, NH3-TPD, Pyridine-IR and FT-IR. In addition, the catalyst of chelate bidentate coordination acid center model was established. The catalytic performance test was carried out in the esterification of n-butyl alcohol with lauric acid and the catalyst showed excellent activity. The experimental results showed that the medium strength acid sites were more dominant active sites than the strong and weak acid sites for the rapid esterification reaction. Its kinetic behaviors and activation energy were studied for the esterification under the catalytic reaction condition.展开更多
Supported palladium catalysts, which were used in the oxidative esterification of methacrolein to methyl methacrylate, have been prepared with different carriers and Pd precursors. Experimental results revealed that P...Supported palladium catalysts, which were used in the oxidative esterification of methacrolein to methyl methacrylate, have been prepared with different carriers and Pd precursors. Experimental results revealed that Pd catalysts with r-Al2O3 support and Na2PdC14 precursor showed good performance. Pd catalyst modified with Pb and Mg indicated that Pd-Mg bimetallic catalyst exhibited considerably higher activity and Pd-Pb exhibited both higher activity and selectivity. 92.27% methacrolein conversion and 90.57% methyl methacrylate selectivity were obtained on Pd-Pb-Mg catalyst.展开更多
Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered...Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered without loss of activity.展开更多
The esterification of lauric acid with methanol could be efficiently catalyzed by ZrOCl2·8H2O, and this reaction was studied to develop a green method for biodiesel production. The influencing factors, such as am...The esterification of lauric acid with methanol could be efficiently catalyzed by ZrOCl2·8H2O, and this reaction was studied to develop a green method for biodiesel production. The influencing factors, such as amount of catalyst, reaction time and molar ratio of acid to methanol, were investigated. The results indicated that the ZrOCl2·8H2O catalyst showed high catalytic activity, and gave a 97.0% methyl laurate conversion rate under the following optimized conditions, viz.: a lauric acid/methanol molar ratio of 1:10, a catalyst dosage of 4%, and a reaction duration of 2 h at methanol refluxing temperature. The catalyst could be easily recovered while its activity could be well retained after three cycles. The ZrOCl2·8H2O catalyst also exhibited excellent catalytic activity for the esterification of different free long-chain fatty acids(including nonedible oils with high acid value) with different short carbon chain alcohols. Therefore, the ZrOCl2·8H2O catalyst has good potential for the synthesis of biodiesel from low-cost feedstocks such as waste vegetable oils and non-edible oils.展开更多
Utilization of biomass-derived materials or chemicals plays a significant role in reducing the dependence of unsustainable resources of petroleum and coal. A series of sulfonated glucose-derived solid acids(SGSAs) wer...Utilization of biomass-derived materials or chemicals plays a significant role in reducing the dependence of unsustainable resources of petroleum and coal. A series of sulfonated glucose-derived solid acids(SGSAs) were developed in this study through a one-step method. These catalysts were characterized by XRD, FT-IR, SEM,and BET to determine their physiochemical properties, and their acid content was measured by acid–base titration. The catalytic performances of SGSA catalysts were evaluated in two esterification reactions: propionic acid or oleic acid with methanol(a typical reaction to upgrade biodiesel). Conversion of oleic acid and selectivity of methyl oleate can reach as high as 93.3% and 94.7% respectively over SGSA-6, which has the highest -SO3 H density. Moreover, regeneration of spent catalysts by sulfuric acid solution can significantly enhance their stability and reusability.展开更多
A series of supported intermetallic Pb-Pb catalysts were prepared with the impregnation method by changing the support(silica,molecular sieve or γ-alumina)and the pore size.The chemical states of the two metals were ...A series of supported intermetallic Pb-Pb catalysts were prepared with the impregnation method by changing the support(silica,molecular sieve or γ-alumina)and the pore size.The chemical states of the two metals were characterized by XPS analysis,the process for producing methyl methacrylate based on the direct oxidative esterification of methacrolein with methanol in the presence of oxygen was performed in a slurry reactor with the above-mentioned catalysts.The influence of the calcination temperature and the kinds of support as well as the pore size on catalytic activity had been extensively investigated.Under the conditions of temperature at 80℃,catalyst 3.8%(ω)and the reaction time 2 h,the conversion rate of methacrolein reached 85%,the selectivity and the yield of methyl methacrylate were 90% and 76.5%,respectively.展开更多
A self-made lipase preparation from Candida sp. 99-125 was used for the production of biodiesel through enzymatic esterification of fatty acids. The crude lipase powder and fermentation broth were immobilized on a che...A self-made lipase preparation from Candida sp. 99-125 was used for the production of biodiesel through enzymatic esterification of fatty acids. The crude lipase powder and fermentation broth were immobilized on a cheap fiber cloth carrier. The conditions of lipase-catalyzed esterification between long-chain fatty acids and methanol in a solvent system were investigated in detail, including the temperature, pH value, substrate concentration, solvent, absorbent agent, enzyme dosage and purity, immobilization method, the mode of addition of substrate. The results show that reaction temperature, pH of lipase micro-environment, substrate concentration, enzyme dosage and purity affect the esterification strongly. Several new methods and enzymatic procedures for improving the enzymatic reaction involving the process cost are also discussed, such as fossil diesel fuel as reaction solvent, immobilization method, multi-step gradient addition of methanol. The esterification degree of 92.8% was obtained with oleic acid and methanol under the optimal reaction condition after 12.5 h reaction time. The half-life of the immobilized lipase preparation from crude free lipase powder for esterification was 15 days.展开更多
The esterification of free fatty acids(FFA) in waste cooking oil with methanol in the presence of Fe2(SO4)3/C(ferric sulfate/active carbon) catalyst was studied.The effects of different temperature,methanol/FFA mole r...The esterification of free fatty acids(FFA) in waste cooking oil with methanol in the presence of Fe2(SO4)3/C(ferric sulfate/active carbon) catalyst was studied.The effects of different temperature,methanol/FFA mole ratio and amount of catalyst on the conversion of FFA were investigated.The results demonstrated that under optimal esterification conditions the final acid value of the resultant system can be reduced to ~1(mg KOH)·g-1,which met fully the requirements in post-treatment for efficient separation of glycerin and biodiesel.The kinetics of the esterification were also investigated under different temperatures.The results indicated that the rate-control step could be attributed to the surface reaction and the esterification processes can be well-depicted by the as-calculated kinetic formula in the range of the experimental conditions.展开更多
Introduction Although the application of microwave technique has been reported as a new type of energy source chemically, it is only in recent years that this technique has been used as the energy source for organic s...Introduction Although the application of microwave technique has been reported as a new type of energy source chemically, it is only in recent years that this technique has been used as the energy source for organic synthesis. In 1986, R. Gedye, et al., published the report of the benzoate synthesis from the respective reactions between benzene carboxylic acid and methanol, propanol or butanol under microwave heating and the catalysis of H;SO;.展开更多
基金supported by Shanxi Provincial Science and Technology Achievement Transformation Guidance Special Program of China(202104021301052)Shanxi Provincial Patent Transformation Special Plan Project(202202054,202306013).
文摘As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-helix structure connected by hydrogen bonds cannot resist the mechanical environment of strong stress,XG shows poor shear resistance.In this study,a polymer gel with interpenetrating polymer network structure was prepared by esterifying XG,taking polystyrene maleic anhydride(SMA)as the modifier.In addition to retaining the excellent rheological properties of XG,the generated polymer gel also exhibited high shear resistance.The optimal addition amount of the esterification reaction modifier was determined as mXG:mSMA=5:3 according to the gel ink standard.With this amount,the viscosity of the modified xanthan gum(SXG)gel increased to 1578.8 mPa·s and 100.7 mPa·s at shear rates of 4 s1 and 383 s1,respectively,and the shear resistance increased more than 2 times compared to the unmodified one.It is because of the ester bond formed by esterification that the reaction strengthens the interaction between molecular segments,enabling the new gel to resist to strong mechanical stress.The new polymer gel studied in this paper and the proposed mechanism of action provide new insights for the development of high-end gel ink and also provide theoretical support for the study of rheological properties of non-Newtonian fluids.
基金supported by the National Research and Development Program of China(2021YFC3001100)the National Natural Science Foundation of China(22288102).
文摘Glycerol monolaurate(GML)is a widely used industrial chemical with excellent emulsification and antibacterial effect.The direct esterification of glycerol with lauric acid is the main method to synthesize GML.In this work,the kinetic process of direct esterification was systematically studied using p-toluenesulfonic acid as catalyst.A complete kinetic model of consecutive esterification reaction has been established,and the kinetic equation of acid catalysis was deduced.The isomerization reactions of GML and glycerol dilaurate were investigated.It was found that the reaction was an equilibrium reaction and the reaction rate was faster than the esterification reaction.The kinetic equations of the consecutive esterification reaction were obtained by experiments as k_(1)=(276+92261Xcat)exp(-37720/RT)and k_(2)=(80+4413Xcat)exp(-32240/RT).The kinetic results are beneficial to the optimization of operating conditions and reactor design in GML production process.
基金supported by Guangdong Natural Science Foundation(S2013030013338)the Ph D.Programs Foundation of Ministry of Education of China(20114404130002)Guangdong Planed Program in Science and Technology(cgzhzd0808,2013B051000072,2012A020100002)
文摘Gatifloxacin (GFX) is a kind of chiral fluoroquinolones compound due to the methyl group at the C-3 position of the piperazine ring[1]. Although the enantiomers of GFX show similar levels of antimicrobial activity and pharmacokinetics[2], the other biological activities (i.e., toxicity or enantioselective recognition to various receptors in vivo) of GFX enantiomers have not yet been studied. With this in mind, we developed a rapid and cost-effective high performance liquid chromatographic (HPLC) separation procedure for GFX enantiomers with a pre-column esterification strategy.
文摘There were various problems in the determination of oil acid value of the national standard method, and this paper developed a low cost, simple and effective way to determine the acid value of oil and grease. Furthermore, the esterification of high acid Euphorbia lathyris L. oil (ELO) with methanol could be efficiently catalyzed by hydrochloric acid to produce biodiesel, and the influencing factors such as the amount of catalyst, reaction time, reaction temperature and molar ratio of oil to methanol were also studied. Under the optimized conditions with the oil to methanol molar ratio of 1:30 and a reaction temperature of 70℃, 95.8% oil conversion was obtained within 40 min in the presence of only 2.0 wt% of catalyst. Therefore, the low-cost non-edible Euphorbia lathyris L. oil as a raw material had good potential for the synthesis of biodiesel in industry.
文摘Non edible oil sources have the potential to lower the cost of biodiesel. However, they usually contain significant high amounts of free fatty acids (FFA) that make them inadequate for direct base catalyzed transesterification reaction (where the FFA content should be lower than 3%). The present work reviews chemical re-esterification as a possible method for the pre-treatment of high FFA feedstock for biodiesel production. The effects of temperature, amount of glycerol, type and amount of catalyst have been discussed. Chemical re-esterification lowers FFA to acceptable levels for transesterification at the same time utilizing the glycerol by product from the same process. Further researches have been proposed as a way forward to improve the process kinetics and optimization so as to make it more economical.
基金supported by the National Natural Science Foundation of China(2123600121176056)+1 种基金the Programme for 100 Excellent Talents in Universities of Hebei Province(II)(BR2-208)the Natural Science Foundation of Hebei Province(B2015202228)~~
文摘A carbon solid acid catalyst was prepared by the sulfonation of partially carbonized peanut shell with concentrated H2SO4. The structure and acidity of the catalyst were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and elemental analysis, which showed that it was an amorphous carbon material composed of aromatic carbon sheets in random orientations. Sulfonic acid groups were present on the surface at a density of 0.81 mmol/g. The carbon solid acid catalyst showed better performance than HZSM‐5 for the esterification of cyclohexene with formic acid. At a3:1 molar ratio of formic acid to cyclohexene, catalyst loading of 0.07 g/mL of cyclohexene, and reaction time of 1 h at 413 K, the cyclohexene conversion was 88.4% with 97.3% selectivity to cyclohexyl formate. The carbon solid acid catalyst showed better reusability than HZSM‐5 because its large pores were minimally affected by the accumulation of oligomerized cyclohexene, which deactivated HZSM‐5. The activity of the carbon solid acid catalyst decreased somewhat in the first two recycles due to the leaching of polycyclic aromatic hydrocarbon containing –SO3H groups and then it remained constant in the following reuse.
文摘Fhnctionalized ionic liquid samples (bmim-PW12) were synthesized by 1-butyl-3-methyl- imidazolium bromide (bmimBr) and 12-phosphotungstic heteropolyacid (PW12). The samples were annealed at 100-450 ℃ and were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermal gravity-DTG, brunauer emmett teller, and NHa-temperature programmed desorption. The results showed that the bmim-PW12 samples were crystal and maintained intact Keggin structure. The organic parts of those samples were partly decomposed at a temperature more than 350 ℃. The sample annealed at 400 ℃ exhibited nano-porous structure, strong acidity, and excellent catalytic activity on the esterification of n-butanol with acetic acid. The higher ester yield was obtained when the mass ratio of catalyst over the reactants amount was 5% for bmim-PW12 catalyst annealed at 400 ℃.
基金supported by the National Natural Science Foundation of China(21233008,21643013,21690084)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020300)the Youth Innovation Promotion Association CAS(2013121)~~
文摘From both fundamental and practical perspectives, the production of chemicals from biomass re-sources using high-efficiency non-precious metal catalysts is important. However, many processes require addition of stoichiometric or excess quantities of base, which leads to high energy consump-tion, leaching problems, and side reactions. In this study, we investigated the high-efficiency oxida-tive esterification of furfural to methylfuroate by molecular oxygen with a Co-N-C/MgO catalyst. The catalyst was prepared by direct pyrolysis of a cobalt(Ⅱ) phenanthroline complex on MgO at 800℃ under N2 atmosphere. From furfural, 93.0% conversion and 98.5% selectivity toward methylfuroate were achieved under 0.5 MPa O2 with reaction at 100 ℃ for 12 h without a basic additive. The con-version and selectivity were much higher than those obtained with cobalt catalysts produced by pyrolysis of a cobalt(Ⅱ) phenanthroline complex on activated carbon or typical basic supports, in-cluding NaX, NaY, and CaO. X-ray photoelectron spectroscopy, X-ray diffraction, transmission elec-tron microscopy, and experimental results revealed that the high efficiency of Co-N-C/MgO for pro-duction of methylfuroate was closely related to the cobalt-nitrogen-doped carbon species and its catalytic ability in hydrogen abstraction. In contrast, Co-N-C(HCl) that synthesized by removing MgO with HCl from Co-N-C/MgO, as the catalyst produced mainly an acetal as a condensation prod-uct, and chloride ions had a negative effect on the oxidative esterification. Although the catalytic performance of the cobalt-nitrogen-doped carbon species was greatly affected by HCl treatment, it could be recovered to a great extent by addition of MgO. Moreover, changes in the oxygen pressure hardly affected the oxidative esterification of furfural with Co-N-C/MgO. This study not only pro-vides an effective approach to prepare methylfuroate, but also for designing high-performance non-precious metal catalysts for the oxidative esterification of biomass-derived compounds.
文摘An efficient esterification of ferrocenecarboxylic acid with substituted phenols has been achieved using DCC / DMAP protocol in ionic liquids. The corresponding esters are produced in high yields.
基金the Graduate Student Innovation Scientific Research Projects of Heilongjiang Province, China (No.YJSCX2007-0282-HLJ)
文摘La-SO42-/SBA-15 was synthesized with various amounts of lanthanum via incipient-wetness impregnation. Characterization was done by X-ray diffraction(XRD), transmission electron micrographs(TEM), nitrogen adsorption, FTIR spectroscopic analysis, thermogravimetric analysis, and the total amount of acidity of catalyst was estimated by TPD of NH3. The results indicate that lanthanum has been incorporated into SBA-15 molecular sieve. The prepared materials(La-SO42-/SBA-15) keep the highly ordered mesoporous two-dimensional hexagonal structure and do not change the mesoporous channel structure of the support SBA-15. The catalyst showed best catalytic activity in the synthesis of n-butyl acetate. The optimum conditions of the esterification by orthogonal experiments were studied: the molar ratio of n-butanol to acetic acid 1:1.2, the amount of catalyst 7.5%, reaction time 80 min. The yield of n-butyl acetate could reach 93.2% under the optimum conditions. The catalyst was recyclable, cost effective and environmental friendly.
基金Supported by the Key Program of the National Natural Science Foundation of China(21036007)the National High-Tech Project of China(2012AA062903)
文摘Novel Mg O–SBA-15 supported catalysts were prepared for oxidative esterification of methacrolein(MAL) with methanol to methyl methacrylate(MMA). The Mg O–SBA-15 supports were synthesized with different magnesia loadings from different magnesium precursors and hydrochloric acid molar concentrations. The Mg O–SBA-15 supports and Pd–Pb/Mg O–SBA-15 catalysts were characterized by several analysis methods. The results revealed that the addition of Mg O improved the ordered structure of SBA-15 supports and provided surface alkalinity of SBA-15 supports. The average size of the Pd3 Pb particles on magnesia-modified Pd–Pb/Mg O–SBA-15 catalysts was smaller than that on the pure silica-based Pd–Pb/SBA-15 catalysts. The experiments on catalyst performance showed that the magnesia-modified Pd–Pb/Mg O–SBA-15 catalysts had higher activity than pure silica-based Pd–Pb/SBA-15 catalysts, showing the strong dependence of catalytic activity on the average size of active particles. The difference of activity between Pd–Pb/SBA-15 catalysts and Pd–Pb/Mg O–SBA-15 catalysts was due to the discrepant structural properties and surface alkalinity provided by Mg O, which led to the different Pd3 Pb particle sizes and then resulted in the different number of active sites. Besides magnesia loadings, other factors, such as hydrochloric acid molar concentration and magnesium precursors, had considerable influences on the catalytic activity.
基金Sichuan University and laboratory for their support.
文摘In this work, a series of SO4^2-/TiO2/γ-Al2O3 solid acid catalysts were synthesized by impregnation method, in which nano-TiO2 was prepared by sol–gel method, and then the nano-TiO2 sol was loaded on porous γ-Al2O3 supporter through impregnation. The structure and property of catalyst were characterized by XRD, N2-BET,SEM, TEM, XPS, NH3-TPD, Pyridine-IR and FT-IR. In addition, the catalyst of chelate bidentate coordination acid center model was established. The catalytic performance test was carried out in the esterification of n-butyl alcohol with lauric acid and the catalyst showed excellent activity. The experimental results showed that the medium strength acid sites were more dominant active sites than the strong and weak acid sites for the rapid esterification reaction. Its kinetic behaviors and activation energy were studied for the esterification under the catalytic reaction condition.
基金Financial supported by the National Natural Science Foundation of China (No.20436050)Foundation of Graduate University of the Chinese Academy of Sciences.
文摘Supported palladium catalysts, which were used in the oxidative esterification of methacrolein to methyl methacrylate, have been prepared with different carriers and Pd precursors. Experimental results revealed that Pd catalysts with r-Al2O3 support and Na2PdC14 precursor showed good performance. Pd catalyst modified with Pb and Mg indicated that Pd-Mg bimetallic catalyst exhibited considerably higher activity and Pd-Pb exhibited both higher activity and selectivity. 92.27% methacrolein conversion and 90.57% methyl methacrylate selectivity were obtained on Pd-Pb-Mg catalyst.
文摘Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered without loss of activity.
基金financially supported by the Chunhui Project of the Ministry of Education of China (Z122007)
文摘The esterification of lauric acid with methanol could be efficiently catalyzed by ZrOCl2·8H2O, and this reaction was studied to develop a green method for biodiesel production. The influencing factors, such as amount of catalyst, reaction time and molar ratio of acid to methanol, were investigated. The results indicated that the ZrOCl2·8H2O catalyst showed high catalytic activity, and gave a 97.0% methyl laurate conversion rate under the following optimized conditions, viz.: a lauric acid/methanol molar ratio of 1:10, a catalyst dosage of 4%, and a reaction duration of 2 h at methanol refluxing temperature. The catalyst could be easily recovered while its activity could be well retained after three cycles. The ZrOCl2·8H2O catalyst also exhibited excellent catalytic activity for the esterification of different free long-chain fatty acids(including nonedible oils with high acid value) with different short carbon chain alcohols. Therefore, the ZrOCl2·8H2O catalyst has good potential for the synthesis of biodiesel from low-cost feedstocks such as waste vegetable oils and non-edible oils.
基金Supported by the Natural Science Key Project of the Jiangsu Higher Education Institutions(15KJA220001)Jiangsu Province Six Talent Peaks Project(2016-XCL-043)+1 种基金the Young Natural Science Foundation of Jiangsu Province(BK20170918)the National Natural Science Foundation of China(NNSFC 21706134)
文摘Utilization of biomass-derived materials or chemicals plays a significant role in reducing the dependence of unsustainable resources of petroleum and coal. A series of sulfonated glucose-derived solid acids(SGSAs) were developed in this study through a one-step method. These catalysts were characterized by XRD, FT-IR, SEM,and BET to determine their physiochemical properties, and their acid content was measured by acid–base titration. The catalytic performances of SGSA catalysts were evaluated in two esterification reactions: propionic acid or oleic acid with methanol(a typical reaction to upgrade biodiesel). Conversion of oleic acid and selectivity of methyl oleate can reach as high as 93.3% and 94.7% respectively over SGSA-6, which has the highest -SO3 H density. Moreover, regeneration of spent catalysts by sulfuric acid solution can significantly enhance their stability and reusability.
基金Supported by the National Natural Science Foundation of China(No.20436050)and the National High Technology Development Program of China(No.2004AA649240).
文摘A series of supported intermetallic Pb-Pb catalysts were prepared with the impregnation method by changing the support(silica,molecular sieve or γ-alumina)and the pore size.The chemical states of the two metals were characterized by XPS analysis,the process for producing methyl methacrylate based on the direct oxidative esterification of methacrolein with methanol in the presence of oxygen was performed in a slurry reactor with the above-mentioned catalysts.The influence of the calcination temperature and the kinds of support as well as the pore size on catalytic activity had been extensively investigated.Under the conditions of temperature at 80℃,catalyst 3.8%(ω)and the reaction time 2 h,the conversion rate of methacrolein reached 85%,the selectivity and the yield of methyl methacrylate were 90% and 76.5%,respectively.
基金Supported by the National Natural Science Foundation of China (No. 20176020) and 863 Hi-Technology Research and Deve-lopment Program of China (No. 2002AA514030)
文摘A self-made lipase preparation from Candida sp. 99-125 was used for the production of biodiesel through enzymatic esterification of fatty acids. The crude lipase powder and fermentation broth were immobilized on a cheap fiber cloth carrier. The conditions of lipase-catalyzed esterification between long-chain fatty acids and methanol in a solvent system were investigated in detail, including the temperature, pH value, substrate concentration, solvent, absorbent agent, enzyme dosage and purity, immobilization method, the mode of addition of substrate. The results show that reaction temperature, pH of lipase micro-environment, substrate concentration, enzyme dosage and purity affect the esterification strongly. Several new methods and enzymatic procedures for improving the enzymatic reaction involving the process cost are also discussed, such as fossil diesel fuel as reaction solvent, immobilization method, multi-step gradient addition of methanol. The esterification degree of 92.8% was obtained with oleic acid and methanol under the optimal reaction condition after 12.5 h reaction time. The half-life of the immobilized lipase preparation from crude free lipase powder for esterification was 15 days.
文摘The esterification of free fatty acids(FFA) in waste cooking oil with methanol in the presence of Fe2(SO4)3/C(ferric sulfate/active carbon) catalyst was studied.The effects of different temperature,methanol/FFA mole ratio and amount of catalyst on the conversion of FFA were investigated.The results demonstrated that under optimal esterification conditions the final acid value of the resultant system can be reduced to ~1(mg KOH)·g-1,which met fully the requirements in post-treatment for efficient separation of glycerin and biodiesel.The kinetics of the esterification were also investigated under different temperatures.The results indicated that the rate-control step could be attributed to the surface reaction and the esterification processes can be well-depicted by the as-calculated kinetic formula in the range of the experimental conditions.
文摘Introduction Although the application of microwave technique has been reported as a new type of energy source chemically, it is only in recent years that this technique has been used as the energy source for organic synthesis. In 1986, R. Gedye, et al., published the report of the benzoate synthesis from the respective reactions between benzene carboxylic acid and methanol, propanol or butanol under microwave heating and the catalysis of H;SO;.