The influence of pre-aging treatment on the microstructure,texture and mechanical properties of the Mg–6Zn–1Gd–1Er(wt.%)alloy was investigated.The microstructure analysis shows that the presence of pre-aging is ben...The influence of pre-aging treatment on the microstructure,texture and mechanical properties of the Mg–6Zn–1Gd–1Er(wt.%)alloy was investigated.The microstructure analysis shows that the presence of pre-aging is beneficial to{1012}twin nucleation at the early stage of extrusion and inhibits the growth of twins and promotes the formation of[1010]-fiber texture components,thus accelerating the complex process of recrystallization.In the middle stage of extrusion,the extruded samples under the condition of solid solution were subjected to dynamic precipitation during severe shear deformation.The precipitation of the second phase particles followed the particle stimulating nucleation(PSN)mechanism,which increased the volume fraction of DRX grains during extrusion.In the extruded samples under the peak-aged condition,the particles appear dissolved during the severe shear deformation strain,which slows down the DRX process.In the later stage of extrusion,the small rod-shaped particles followed the PSN mechanism,and finally formed the strong fiber texture.The extruded alloy exhibits the strongest mechanical properties under the peak-aged state,with ultimate tensile strength(UTS)of 346 MPa,tensile yield strength(TYS)of 217 MPa,and elongation to failure(EL)of 13.6%.The improvement of mechanical properties is mainly attributed to the existence of strong fiber texture,small rod-shaped and block-shaped phases.展开更多
In the industrial production, the dynamic cooling pre-aging treatment was employed to replace the isothermal pre-aging during the continuous heat treatment production of Al-Mg-Si alloy automotive sheets. The effects o...In the industrial production, the dynamic cooling pre-aging treatment was employed to replace the isothermal pre-aging during the continuous heat treatment production of Al-Mg-Si alloy automotive sheets. The effects of dynamic cooling pre-aging treatment on mechanical properties and paint-bake hardening behavior of an Al-Mg-Si alloy sheet are proposed in this study. The scanning electron microscopy, transmission electron microscopy, tensile test, Vickers hardness test, and differential scanning calorimetry were conducted for the purpose. It was found that the dynamic cooling pre-aging treatment at low temperature region led to the decreasing of cluster II, resulting in the deterioration of the ability of the paint-bake hardening. With the increase of the cooling pre-aging temperature, the increasing of cluster II effectively improved the stability against natural aging and the paint-bake hardening ability. The optimized dynamic cooling pre-aging temperature was ~150 ℃. In this condition, the hardness increase of the alloy sheet with pre-aging treatment is low during storage at room temperature. The high yield strength increment is obtained after paint-bake hardening.展开更多
Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourie...Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.展开更多
By means of TEM, hardness, conductivity, tensile strength test, fracture toughness test, polarization curve and EIS, the Al-Zn-Mg-Cu alloys treated by a new multi-stage aging system, i.e. pre-aging, over-aging and re-...By means of TEM, hardness, conductivity, tensile strength test, fracture toughness test, polarization curve and EIS, the Al-Zn-Mg-Cu alloys treated by a new multi-stage aging system, i.e. pre-aging, over-aging and re-aging (120°C/24h + 160°C/8h + 120°C/24h), were characterized. It is found that compared with the Al-Zn-Mg-Cu alloys treated by T76 (120°C/24h + 160°C/8h), the new multi-stage aging treatment can improve the tensile strength, fracture toughness, hardness and conductivity of the alloys at the same time. This is mainly due to the pre-aging, over-aging and re-aging process of super high strength aluminum alloys. Compared with the two-stage over aging process, the formation of multi-stage multi-phase precipitation structure can improve the strength, toughness and corrosion resistance of the alloys at the same time. The polarization curve is consistent with the conclusion. Therefore, we conducted this study to test how the comprehensive properties of the alloy can be improved.展开更多
The effects of pre-aging treatments on subsequent artificial aging response were investigated by means of transmission electron microscopy observations and hardness test in age hardened Al-3.95Cu-(1.32Mg)-0.52Mn-0.11 ...The effects of pre-aging treatments on subsequent artificial aging response were investigated by means of transmission electron microscopy observations and hardness test in age hardened Al-3.95Cu-(1.32Mg)-0.52Mn-0.11 Zr alloys. In Al-3.95Cu-0.52Mn-0.11 Zr alloy, when the pre-aging temperature is 25 °C, the pre-aging treatment has no evident effect on the peak hardness of subsequent artificial aging, while a positive effect(increase of peak hardness) appears when pre-aging temperature is50 °C. However, in Al-3.95Cu-1.32Mg-0.52Mn-0.11 Zr alloy, it is found that whether the pre-aging temperature is 25 °C or 50 °C,the peak artificial aging hardness is lower than that of T6 treated alloy, that is to say, pre-aging treatment has a negative effect on the peak hardness of subsequent artificial aging in the alloys.展开更多
For a series of Al-0.34/%Mg-1.05/%Si-0.08/%Cu alloys, the effects of pre-treatment on natural aging, bake hardening response and plasticity were investigated using Vickers hardness test and tensile test. Differenti...For a series of Al-0.34/%Mg-1.05/%Si-0.08/%Cu alloys, the effects of pre-treatment on natural aging, bake hardening response and plasticity were investigated using Vickers hardness test and tensile test. Differential scanning calorimetry (DSC) analysis was conducted to reveal corresponding precipitation mechanisms. The results showed that pre-straining and pre-aging alone couldn't completely suppress natural aging and improve bake hardening response simultaneously. The sensitivity of the pre-straining and pre-aging on the mechanical properties was evaluated. It was found that pre-aging was the main factor which greatly improved bake hardening response and pre-treatment had a weak influence on plasticity in pre-treated samples. DSC analysis showed that the dissolution trough of clusters disappeared in pre-treated samples, both β”and β' precipitation peak shifted to lower temperature and were reduced in pre-strained and pre-aged samples. It was concluded that the formation of Mg/Si clusters was replaced by the accelerated precipitation ofβ” andβ' phases, which caused the suppression of natural aging and the improvement of bake hardening response (BHR).展开更多
The improvement of post-form properties without compromising creep formability has been a critical issue in creep age forming of aluminum alloy component. A pretreatment process incorporating artificial pre-aging at 1...The improvement of post-form properties without compromising creep formability has been a critical issue in creep age forming of aluminum alloy component. A pretreatment process incorporating artificial pre-aging at 165 °C for 6 h/12 h/24 h followed by pre-strain(3%–9%)has been developed. This method not only evidently improves the strength but also accelerates the creep deformation during creep aging of an Al-Cu alloy. A strength increase of 50 MPa with a slight decrease of ductility relative to the 9% pre-strained alloy is acquired in the alloy artificially pre-aged for 24 h regardless of the pre-strain level(3%–9%). Artificial aging for 24 h prior to 3%pre-strain enables an increase of creep strain by 30%. The creep strain in the alloy artificially preaged for 24 h and pre-strained by 6% is comparable to that in the alloy pre-strained by 9%. The strength and ductility in the alloy artificially pre-aged for 6 h/12 h and pre-strained by 3% are even slightly higher than those in the alloy purely pre-strained by 9%. The characterizations by transmission electron microscopy reveal that pre-aging at 165 °C could promote the accumulation of dislocations during pre-straining due to the pinning effect of pre-existing Guinier-Preston zones(GP zones)/θ’’phases and thus expedite the creep deformation in respect to the pure pre-straining treatment. The enhanced precipitation of θ’phases at these pinned dislocations contributes to the improved strength after creep aging. The results demonstrate applying artificial pre-aging before pre-straining is an efficient strategy to elevate the creep aging response in Al alloys.展开更多
For alloys that are quenched to 25℃ room temperature, there are Mg-Mg, Si-Si and Mg-Si clusters shown by exothermic peaks in a A357 alloy. However, there are no clear Mg-Mg, Si-Si and Mg-Si cluster exothermic peaks i...For alloys that are quenched to 25℃ room temperature, there are Mg-Mg, Si-Si and Mg-Si clusters shown by exothermic peaks in a A357 alloy. However, there are no clear Mg-Mg, Si-Si and Mg-Si cluster exothermic peaks in a A356 alloy. Hence, the low Mg content in a A356 alloy has less impact with natural ageing. The natural ageing impact on the mechanical properties of a A357 alloy is higher than a A356 alloy due to the precipitation of Mg-Si clusters for which the nucleation size does not reach the critical size. The 90℃ pre-ageing process could promote Mg-Si clusters to a critical size to become the nucleation site for of β''. This then increases the artificial ageing strength and mitigates the impact of natural ageing.展开更多
The influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy was investigated by means of microhardness test,tensile test,optical microscopy (OM) and transmission electro...The influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy was investigated by means of microhardness test,tensile test,optical microscopy (OM) and transmission electron microscopy (TEM).The results show that 50% cold rolling deformation prior to aging is beneficial since it promotes a more homogeneous distribution of the precipitation phase and reduces the number of precipitation phase on the grain boundaries,and thus shrinks the total volume of precipitation-free zones at grain and sub-grain boundaries.As a result,the tensile properties of 2519A aluminum alloy have been significantly improved.展开更多
The combined effects of pre-deformation and pre-aging on the mechanical properties of AlCu-Mg alloy with Sc and Zr addition were investigated. It is revealed that the introduction of pre-deformation can enhance the pe...The combined effects of pre-deformation and pre-aging on the mechanical properties of AlCu-Mg alloy with Sc and Zr addition were investigated. It is revealed that the introduction of pre-deformation can enhance the peak-aging strength, as well as tensile and yield strength, effectively due to the formation of finer and more dispersive precipitation. Pre-aging process before pre-deformation can increase the elongation while maintaining higher strength with a discontinuous distribution of precipitates at grain boundary. The precipitates of bean-like Al3(Sc, Zr) particles further strengthen the alloy via pinning the dislocations which are formed during pre-deformation process and hindering the dislocation motion. Furthermore, pre-deformation and pre-aging accelerate the kinetics of precipitation due to preferential sites provided by the dislocation and the increase of GPB zones' size and distribution. The synergism of pre-deformation and pre-aging achieves a combination of better mechanical properties and shorter peak-aging time.展开更多
Effects of additions of trace Sn on the bake-hardening responses of a pre-aged Al-0.85 Mg-0.85 Si(in wt%)alloy were investigated through mechanical tests,differential scanning calorimetry,electrical resistivity and tr...Effects of additions of trace Sn on the bake-hardening responses of a pre-aged Al-0.85 Mg-0.85 Si(in wt%)alloy were investigated through mechanical tests,differential scanning calorimetry,electrical resistivity and transmission electron microscopy.Results indicate that trace Sn additions reduced the number density of pre-aging clusters by inhibiting the formation of unstable counterpart during pre-aging treatment,leading to low strength and high supersaturation of solute atoms.In a subsequent paint-bake treatment,the presence of highly supersaturated solute atoms and high concentrated free vacancies moderated the activation energy barrier ofβ’’phase and thus kinetically accelerated the formation ofβ’’.Consequently,the trace Sn additions enhanced the bake-hardening responses of the pre-aged alloys significantly.The Sn-containing pre-aged Al-Mg-Si alloys with low strength and great bake-hardening responses hold promising potential for automotive body skin applications.展开更多
The influences of pre-ageing temperature and natural ageing time on subsequent artificial age hardening behavior and precipitation sequence of new type Al-1.01Mg-0.O8Si-l.78Cu alloy were investigated by hardness test,...The influences of pre-ageing temperature and natural ageing time on subsequent artificial age hardening behavior and precipitation sequence of new type Al-1.01Mg-0.O8Si-l.78Cu alloy were investigated by hardness test, differential scanning calorimetry (DSC) test and transmission electronic microscopy (TEM) observations. When pre-ageing temperature is 20℃ (natural ageing), the peak hardness of subsequent artificial aged alloy is lower than that of T6 treated alloy (negative effect), while a positive effect appears when pre-ageing temperature is above 80℃. The size of needlelike /3-precipitate in subsequent artificial aged alloy is much coarser when pre-ageing temperature is 20℃, which causes a decrease in peak-hardness. The positive effect occurs again when natural ageing time is longer than 3 weeks. There are seven exothermic peaks in DSC curve of as-quenched alloy, while the number and height of exothermic peak decrease with increasing pre-ageing temperature and natural ageing time.展开更多
This paper describes pre-treatment methods to improve the bake-hardening response of naturally aged AA6022 (Al-0.6Mg-1.0Si), which is an alloy used in automotive body panels. These methods are used to accelerate the...This paper describes pre-treatment methods to improve the bake-hardening response of naturally aged AA6022 (Al-0.6Mg-1.0Si), which is an alloy used in automotive body panels. These methods are used to accelerate the artificial aging process, which proceeds 30-day period of natural aging. The precipitation behavior of the sheets of this aluminum alloy was analyzed by differential scanning calorimetry (DSC) and electrical conductivity measurements, and subsequently confirmed by microstructure observations by transmission electron microscopy (TEM). Tensile tests and microhardness measurements were performed to determine the mechanical properties of the samples. Under simulated paint-baking conditions (30 min at 170℃), the microhardness and the yield strength (YS) of the pre-strained + pre-aged samples were found to be I13 HV and 225 MPa, respectively. These values are considerably higher than those of pre-aged samples, and they did not decrease significantly during the initial stage of artificial aging.展开更多
基金the financial supports from the National Natural Science Foundation of China(Grant No.51975207&51404079)Hunan Provincial Natural Science Foundation for Excellent Young Scholars of China(Grant No.2019JJ30010)Guangdong Provincial Department of Science and Technology(Grant No.2014B010105009,No.2015A030313902)。
文摘The influence of pre-aging treatment on the microstructure,texture and mechanical properties of the Mg–6Zn–1Gd–1Er(wt.%)alloy was investigated.The microstructure analysis shows that the presence of pre-aging is beneficial to{1012}twin nucleation at the early stage of extrusion and inhibits the growth of twins and promotes the formation of[1010]-fiber texture components,thus accelerating the complex process of recrystallization.In the middle stage of extrusion,the extruded samples under the condition of solid solution were subjected to dynamic precipitation during severe shear deformation.The precipitation of the second phase particles followed the particle stimulating nucleation(PSN)mechanism,which increased the volume fraction of DRX grains during extrusion.In the extruded samples under the peak-aged condition,the particles appear dissolved during the severe shear deformation strain,which slows down the DRX process.In the later stage of extrusion,the small rod-shaped particles followed the PSN mechanism,and finally formed the strong fiber texture.The extruded alloy exhibits the strongest mechanical properties under the peak-aged state,with ultimate tensile strength(UTS)of 346 MPa,tensile yield strength(TYS)of 217 MPa,and elongation to failure(EL)of 13.6%.The improvement of mechanical properties is mainly attributed to the existence of strong fiber texture,small rod-shaped and block-shaped phases.
基金Project(2020YFF0218200) supported by the National Key R&D Program of China。
文摘In the industrial production, the dynamic cooling pre-aging treatment was employed to replace the isothermal pre-aging during the continuous heat treatment production of Al-Mg-Si alloy automotive sheets. The effects of dynamic cooling pre-aging treatment on mechanical properties and paint-bake hardening behavior of an Al-Mg-Si alloy sheet are proposed in this study. The scanning electron microscopy, transmission electron microscopy, tensile test, Vickers hardness test, and differential scanning calorimetry were conducted for the purpose. It was found that the dynamic cooling pre-aging treatment at low temperature region led to the decreasing of cluster II, resulting in the deterioration of the ability of the paint-bake hardening. With the increase of the cooling pre-aging temperature, the increasing of cluster II effectively improved the stability against natural aging and the paint-bake hardening ability. The optimized dynamic cooling pre-aging temperature was ~150 ℃. In this condition, the hardness increase of the alloy sheet with pre-aging treatment is low during storage at room temperature. The high yield strength increment is obtained after paint-bake hardening.
基金This work was supported by the National Natural Science Foundation of China(No.61673004 and No.11472048)the Fundamental Research Funds for the Central Universities of China(XK1802-4).
文摘Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.
文摘By means of TEM, hardness, conductivity, tensile strength test, fracture toughness test, polarization curve and EIS, the Al-Zn-Mg-Cu alloys treated by a new multi-stage aging system, i.e. pre-aging, over-aging and re-aging (120°C/24h + 160°C/8h + 120°C/24h), were characterized. It is found that compared with the Al-Zn-Mg-Cu alloys treated by T76 (120°C/24h + 160°C/8h), the new multi-stage aging treatment can improve the tensile strength, fracture toughness, hardness and conductivity of the alloys at the same time. This is mainly due to the pre-aging, over-aging and re-aging process of super high strength aluminum alloys. Compared with the two-stage over aging process, the formation of multi-stage multi-phase precipitation structure can improve the strength, toughness and corrosion resistance of the alloys at the same time. The polarization curve is consistent with the conclusion. Therefore, we conducted this study to test how the comprehensive properties of the alloy can be improved.
基金Project(2006AA03Z517)supported by the National High-tech Research and Development Program of ChinaProject(CSUZC2013019)supported by Open Fund for the Precision Instruments of Central South University,China
文摘The effects of pre-aging treatments on subsequent artificial aging response were investigated by means of transmission electron microscopy observations and hardness test in age hardened Al-3.95Cu-(1.32Mg)-0.52Mn-0.11 Zr alloys. In Al-3.95Cu-0.52Mn-0.11 Zr alloy, when the pre-aging temperature is 25 °C, the pre-aging treatment has no evident effect on the peak hardness of subsequent artificial aging, while a positive effect(increase of peak hardness) appears when pre-aging temperature is50 °C. However, in Al-3.95Cu-1.32Mg-0.52Mn-0.11 Zr alloy, it is found that whether the pre-aging temperature is 25 °C or 50 °C,the peak artificial aging hardness is lower than that of T6 treated alloy, that is to say, pre-aging treatment has a negative effect on the peak hardness of subsequent artificial aging in the alloys.
基金supported by the Fundamental Research Fund for the Central Universities(No.CDJZR10130018)the Chongqing Science and Technology Commission (No.2011GZ0039)
文摘For a series of Al-0.34/%Mg-1.05/%Si-0.08/%Cu alloys, the effects of pre-treatment on natural aging, bake hardening response and plasticity were investigated using Vickers hardness test and tensile test. Differential scanning calorimetry (DSC) analysis was conducted to reveal corresponding precipitation mechanisms. The results showed that pre-straining and pre-aging alone couldn't completely suppress natural aging and improve bake hardening response simultaneously. The sensitivity of the pre-straining and pre-aging on the mechanical properties was evaluated. It was found that pre-aging was the main factor which greatly improved bake hardening response and pre-treatment had a weak influence on plasticity in pre-treated samples. DSC analysis showed that the dissolution trough of clusters disappeared in pre-treated samples, both β”and β' precipitation peak shifted to lower temperature and were reduced in pre-strained and pre-aged samples. It was concluded that the formation of Mg/Si clusters was replaced by the accelerated precipitation ofβ” andβ' phases, which caused the suppression of natural aging and the improvement of bake hardening response (BHR).
基金support from the National Natural Science Foundation of China(Nos.52274404,U2032117,U22A20190)Natural Science Foundation of Hunan Province,China(No.2022JJ20065)+1 种基金the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1001)the National Key Research and Development Program of China(No.2021YFB3400903).
文摘The improvement of post-form properties without compromising creep formability has been a critical issue in creep age forming of aluminum alloy component. A pretreatment process incorporating artificial pre-aging at 165 °C for 6 h/12 h/24 h followed by pre-strain(3%–9%)has been developed. This method not only evidently improves the strength but also accelerates the creep deformation during creep aging of an Al-Cu alloy. A strength increase of 50 MPa with a slight decrease of ductility relative to the 9% pre-strained alloy is acquired in the alloy artificially pre-aged for 24 h regardless of the pre-strain level(3%–9%). Artificial aging for 24 h prior to 3%pre-strain enables an increase of creep strain by 30%. The creep strain in the alloy artificially preaged for 24 h and pre-strained by 6% is comparable to that in the alloy pre-strained by 9%. The strength and ductility in the alloy artificially pre-aged for 6 h/12 h and pre-strained by 3% are even slightly higher than those in the alloy purely pre-strained by 9%. The characterizations by transmission electron microscopy reveal that pre-aging at 165 °C could promote the accumulation of dislocations during pre-straining due to the pinning effect of pre-existing Guinier-Preston zones(GP zones)/θ’’phases and thus expedite the creep deformation in respect to the pure pre-straining treatment. The enhanced precipitation of θ’phases at these pinned dislocations contributes to the improved strength after creep aging. The results demonstrate applying artificial pre-aging before pre-straining is an efficient strategy to elevate the creep aging response in Al alloys.
文摘For alloys that are quenched to 25℃ room temperature, there are Mg-Mg, Si-Si and Mg-Si clusters shown by exothermic peaks in a A357 alloy. However, there are no clear Mg-Mg, Si-Si and Mg-Si cluster exothermic peaks in a A356 alloy. Hence, the low Mg content in a A356 alloy has less impact with natural ageing. The natural ageing impact on the mechanical properties of a A357 alloy is higher than a A356 alloy due to the precipitation of Mg-Si clusters for which the nucleation size does not reach the critical size. The 90℃ pre-ageing process could promote Mg-Si clusters to a critical size to become the nucleation site for of β''. This then increases the artificial ageing strength and mitigates the impact of natural ageing.
基金Project(2005CB623706) supported by the National Basic Research Program of China
文摘The influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy was investigated by means of microhardness test,tensile test,optical microscopy (OM) and transmission electron microscopy (TEM).The results show that 50% cold rolling deformation prior to aging is beneficial since it promotes a more homogeneous distribution of the precipitation phase and reduces the number of precipitation phase on the grain boundaries,and thus shrinks the total volume of precipitation-free zones at grain and sub-grain boundaries.As a result,the tensile properties of 2519A aluminum alloy have been significantly improved.
基金Funded by the National High-tech Research&Development Program of China(No.2013AA031002)
文摘The combined effects of pre-deformation and pre-aging on the mechanical properties of AlCu-Mg alloy with Sc and Zr addition were investigated. It is revealed that the introduction of pre-deformation can enhance the peak-aging strength, as well as tensile and yield strength, effectively due to the formation of finer and more dispersive precipitation. Pre-aging process before pre-deformation can increase the elongation while maintaining higher strength with a discontinuous distribution of precipitates at grain boundary. The precipitates of bean-like Al3(Sc, Zr) particles further strengthen the alloy via pinning the dislocations which are formed during pre-deformation process and hindering the dislocation motion. Furthermore, pre-deformation and pre-aging accelerate the kinetics of precipitation due to preferential sites provided by the dislocation and the increase of GPB zones' size and distribution. The synergism of pre-deformation and pre-aging achieves a combination of better mechanical properties and shorter peak-aging time.
基金financially supported by the National Key R&D Program of China(No.2018YFB2001800).
文摘Effects of additions of trace Sn on the bake-hardening responses of a pre-aged Al-0.85 Mg-0.85 Si(in wt%)alloy were investigated through mechanical tests,differential scanning calorimetry,electrical resistivity and transmission electron microscopy.Results indicate that trace Sn additions reduced the number density of pre-aging clusters by inhibiting the formation of unstable counterpart during pre-aging treatment,leading to low strength and high supersaturation of solute atoms.In a subsequent paint-bake treatment,the presence of highly supersaturated solute atoms and high concentrated free vacancies moderated the activation energy barrier ofβ’’phase and thus kinetically accelerated the formation ofβ’’.Consequently,the trace Sn additions enhanced the bake-hardening responses of the pre-aged alloys significantly.The Sn-containing pre-aged Al-Mg-Si alloys with low strength and great bake-hardening responses hold promising potential for automotive body skin applications.
基金supported by the National Key Technology R&D Program of China under grant No.2007BAE38B01
文摘The influences of pre-ageing temperature and natural ageing time on subsequent artificial age hardening behavior and precipitation sequence of new type Al-1.01Mg-0.O8Si-l.78Cu alloy were investigated by hardness test, differential scanning calorimetry (DSC) test and transmission electronic microscopy (TEM) observations. When pre-ageing temperature is 20℃ (natural ageing), the peak hardness of subsequent artificial aged alloy is lower than that of T6 treated alloy (negative effect), while a positive effect appears when pre-ageing temperature is above 80℃. The size of needlelike /3-precipitate in subsequent artificial aged alloy is much coarser when pre-ageing temperature is 20℃, which causes a decrease in peak-hardness. The positive effect occurs again when natural ageing time is longer than 3 weeks. There are seven exothermic peaks in DSC curve of as-quenched alloy, while the number and height of exothermic peak decrease with increasing pre-ageing temperature and natural ageing time.
文摘This paper describes pre-treatment methods to improve the bake-hardening response of naturally aged AA6022 (Al-0.6Mg-1.0Si), which is an alloy used in automotive body panels. These methods are used to accelerate the artificial aging process, which proceeds 30-day period of natural aging. The precipitation behavior of the sheets of this aluminum alloy was analyzed by differential scanning calorimetry (DSC) and electrical conductivity measurements, and subsequently confirmed by microstructure observations by transmission electron microscopy (TEM). Tensile tests and microhardness measurements were performed to determine the mechanical properties of the samples. Under simulated paint-baking conditions (30 min at 170℃), the microhardness and the yield strength (YS) of the pre-strained + pre-aged samples were found to be I13 HV and 225 MPa, respectively. These values are considerably higher than those of pre-aged samples, and they did not decrease significantly during the initial stage of artificial aging.