In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter u...In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss.展开更多
The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structur...The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structure of the conventional six-switch three phase inverter. In this proposed method, a new structure of four-switch three phase inverter [1] with reduced number of switches for system is introduced to reduce the mechanical commutation, switching losses that occur in the six-switch method. The proposed inverter fed brushless DC motor used in sensorless control schemes which is used for sensing positioning signals. To improve sensor less control performance, four-switch electronic commutation modes based proportional intergral controller scheme is implemented. In this four-switch three phase inverter reduction of switches, low cost control and saving of hall sensor were incorporated. The feasibility of the proposed sensor less control four-switch three phase inverter fed brushless DC motor drive is implemented, analysed using MATLAB/SIMULINK, effective simulation results have been validated out successfully.展开更多
A cost-effective component minimized embedded controlled Z-source inverter for induction motor drive is presented. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with t...A cost-effective component minimized embedded controlled Z-source inverter for induction motor drive is presented. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with the advantages of the z impedance network (two inductors in series and two X connected capacitors). This new topology, besides the self-boost property, has low switch count and it can operate as a buck-boost inverter. As a result, the new embedded controlled reduced switch Z-source inverter system provides ride through capability during voltage sags, reduces line harmonics, improves power factor, reliability and extends output voltage range. Analysis, simulation and experiment result will be presented to demonstrate these new features.展开更多
Implementation of robot-based motion control in optical machining demonstrably enhances the machining quality.The introduction of motion-copying method enables learning and replicating manipulation from experienced te...Implementation of robot-based motion control in optical machining demonstrably enhances the machining quality.The introduction of motion-copying method enables learning and replicating manipulation from experienced technicians.Nevertheless,the location uncertainties of objects and frequent switching of manipulated spaces in practical applications impose constraints on their further advancement.To address this issue,a motion-copying system with a symbol-sequence-based phase switch control(SSPSC)scheme was developed by transferring the operating skills and intelligence of technicians to mechanisms.The manipulation process is decomposed,symbolised,rearranged,and reproduced according to the manufacturing characteristics regardless of the change in object location.A force-sensorless adaptive sliding-mode-assisted reaction force observer(ASMARFOB),wherein a novel dual-layer adaptive law was designed for high-performance fine force sensing,was established.The uniformly ultimate boundedness(UUB)of the ASMARFOB is guaranteed based on the Lyapunov stability theory,and the switching stability of the SSPSC was examined.Validation simulations and experiments demonstrated that the proposed method enables better motion reproduction with high consistency and adaptability.The findings of this study can provide effective theoretical and practical guidance for high-precision intelligent optical manufacturing.展开更多
A.Switch-Redundant Topology An early attempt to add fault tolerant capacity to a standard three-phase inverter topology for induction motors was presented.This topology will be referred to as the switch-redundant t...A.Switch-Redundant Topology An early attempt to add fault tolerant capacity to a standard three-phase inverter topology for induction motors was presented.This topology will be referred to as the switch-redundant topology and is shown in Fig.5.This topology incorporates four TRIACs or back-to-back connected SCRs and three fast acting fuses.The fuses are connected in series with the load phases.Since this topology is a combination of topologies and control methods to accommodate an opened phase,and a shorted switch,they will be considered separately.展开更多
Digital control system for pulsed MIG welding power based on STM32 is set up with 32-bit STM32FlO3ZET6 directing against the pulse waveform modulation of pulsed MIG welding. High-frequency inverter and medium-low freq...Digital control system for pulsed MIG welding power based on STM32 is set up with 32-bit STM32FlO3ZET6 directing against the pulse waveform modulation of pulsed MIG welding. High-frequency inverter and medium-low frequency pulse waveform modulation of pulsed MIG welding are realized by using the integrated PWM module within STM32 to generate PWM signals of phase-shifted full-bridge soft-switching and constant-current control of output current is achieved by means of anti-windup PI control algorithm to improve the stability and reliability of control system. Experimental results demonstrate that the designed digital control system based on STM32 can achieve pegrect pulsed MIG welding technique with stable welding process and good weld appearance, fully demonstrating the advantages of digital control based on STM32.展开更多
This paper describes the statistical study of important factors that influences transient over voltages resulting from three-phase reclosing of shunt compensated transmission lines. These factors include the model use...This paper describes the statistical study of important factors that influences transient over voltages resulting from three-phase reclosing of shunt compensated transmission lines. These factors include the model used for transmission line representation and the influence of line transposition. Additionally, the over voltages reduction to proper levels depending on the type of control technique are illustrated and analyzed in statistical terms. The evaluation covers three shunt compensation degrees. The digital simulations were performed using the PSCAD/EMTDC software.展开更多
针对双三相永磁同步电机模型预测共模电压抑制方法存在寻优计算量大、开关频率较高、稳态性能不佳的问题,提出一种改进型模型预测电流控制.首先,改进六相两电平逆变器,降低零矢量共模电压幅值;其次,选择小共模电压矢量构造虚拟电压矢量...针对双三相永磁同步电机模型预测共模电压抑制方法存在寻优计算量大、开关频率较高、稳态性能不佳的问题,提出一种改进型模型预测电流控制.首先,改进六相两电平逆变器,降低零矢量共模电压幅值;其次,选择小共模电压矢量构造虚拟电压矢量,简化价值函数的同时减小共模电压和电流谐波含量;再次,通过计算参考电压矢量直接选择最优电压矢量以减少寻优次数,并引入占空比控制提升电机控制精度,改善电机稳态性能.最后,仿真对比传统模型预测电流控制、RCMV(Reduced Common Mode Voltage)-1、RCMV-2和所提控制方法.结果表明,所提控制方法在减小共模电压的同时,降低了转矩脉动和谐波电流,且较RCMV-2方法开关频率明显降低;此外,寻优代码执行时间相较于RCMV-1和RCMV-2分别降低了约91%和65%,减小了计算量.展开更多
Short-circuit fault current suppression is a very important issue in modern large-interconnected power networks. Conventional short-circuit current limiters, such as superconducting fault current limiters, have to inc...Short-circuit fault current suppression is a very important issue in modern large-interconnected power networks. Conventional short-circuit current limiters, such as superconducting fault current limiters, have to increase additional equipment investments. Fast power electronics controlled flexible AC transmission system(FACTS)devices have opened a new way for suppressing the fault current levels, while maintaining their normal functionalities for steady-state and transient power system operation and control. Thyristor controlled phase shifting transformer(TCPST) is a beneficial FACTS device in modern power systems, which is capable of regulating regional powerflow. The mathematical model for TCPST under different operation modes is firstly investigated in this study. Intuitively, the phase shifting angle control can adjust the equivalent impedance of TCPST, but the effect has been demonstrated to be weak. Therefore, a novel transformer excitation impedance switching(EIS) control method, is proposed for fault current suppressing, according to the impedance characteristics of TCPST. Simulation results on IEEE 14-bus system have shown considerable current limiting characteristic of the EIS control under various fault types. Also, analysis of the timing requirement during fault interruption, overvoltage phenomenon, and ancillary mechanical support issues during EIS control is discussed,so as to implement the proposed EIS control properly for fast fault current suppression.展开更多
文摘In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss.
文摘The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structure of the conventional six-switch three phase inverter. In this proposed method, a new structure of four-switch three phase inverter [1] with reduced number of switches for system is introduced to reduce the mechanical commutation, switching losses that occur in the six-switch method. The proposed inverter fed brushless DC motor used in sensorless control schemes which is used for sensing positioning signals. To improve sensor less control performance, four-switch electronic commutation modes based proportional intergral controller scheme is implemented. In this four-switch three phase inverter reduction of switches, low cost control and saving of hall sensor were incorporated. The feasibility of the proposed sensor less control four-switch three phase inverter fed brushless DC motor drive is implemented, analysed using MATLAB/SIMULINK, effective simulation results have been validated out successfully.
文摘A cost-effective component minimized embedded controlled Z-source inverter for induction motor drive is presented. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with the advantages of the z impedance network (two inductors in series and two X connected capacitors). This new topology, besides the self-boost property, has low switch count and it can operate as a buck-boost inverter. As a result, the new embedded controlled reduced switch Z-source inverter system provides ride through capability during voltage sags, reduces line harmonics, improves power factor, reliability and extends output voltage range. Analysis, simulation and experiment result will be presented to demonstrate these new features.
基金supported in part by the National Science Foundation of China,under grant numbers T2122001 and 12203049in part by the Key Research Program of Frontier Sciences,CAS,under grant number ZDBS-LY-JSC044in part by the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant number 2023230.
文摘Implementation of robot-based motion control in optical machining demonstrably enhances the machining quality.The introduction of motion-copying method enables learning and replicating manipulation from experienced technicians.Nevertheless,the location uncertainties of objects and frequent switching of manipulated spaces in practical applications impose constraints on their further advancement.To address this issue,a motion-copying system with a symbol-sequence-based phase switch control(SSPSC)scheme was developed by transferring the operating skills and intelligence of technicians to mechanisms.The manipulation process is decomposed,symbolised,rearranged,and reproduced according to the manufacturing characteristics regardless of the change in object location.A force-sensorless adaptive sliding-mode-assisted reaction force observer(ASMARFOB),wherein a novel dual-layer adaptive law was designed for high-performance fine force sensing,was established.The uniformly ultimate boundedness(UUB)of the ASMARFOB is guaranteed based on the Lyapunov stability theory,and the switching stability of the SSPSC was examined.Validation simulations and experiments demonstrated that the proposed method enables better motion reproduction with high consistency and adaptability.The findings of this study can provide effective theoretical and practical guidance for high-precision intelligent optical manufacturing.
文摘A.Switch-Redundant Topology An early attempt to add fault tolerant capacity to a standard three-phase inverter topology for induction motors was presented.This topology will be referred to as the switch-redundant topology and is shown in Fig.5.This topology incorporates four TRIACs or back-to-back connected SCRs and three fast acting fuses.The fuses are connected in series with the load phases.Since this topology is a combination of topologies and control methods to accommodate an opened phase,and a shorted switch,they will be considered separately.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51205136) , the Specialized Research Fund for the Doctoral Program of Higher Education of China ( Grant No. 20100172120003 ) and the Fundamental Research Funds for the Central Universities (Key Program) ( Grant No. 2013ZZ034).
文摘Digital control system for pulsed MIG welding power based on STM32 is set up with 32-bit STM32FlO3ZET6 directing against the pulse waveform modulation of pulsed MIG welding. High-frequency inverter and medium-low frequency pulse waveform modulation of pulsed MIG welding are realized by using the integrated PWM module within STM32 to generate PWM signals of phase-shifted full-bridge soft-switching and constant-current control of output current is achieved by means of anti-windup PI control algorithm to improve the stability and reliability of control system. Experimental results demonstrate that the designed digital control system based on STM32 can achieve pegrect pulsed MIG welding technique with stable welding process and good weld appearance, fully demonstrating the advantages of digital control based on STM32.
文摘This paper describes the statistical study of important factors that influences transient over voltages resulting from three-phase reclosing of shunt compensated transmission lines. These factors include the model used for transmission line representation and the influence of line transposition. Additionally, the over voltages reduction to proper levels depending on the type of control technique are illustrated and analyzed in statistical terms. The evaluation covers three shunt compensation degrees. The digital simulations were performed using the PSCAD/EMTDC software.
文摘针对双三相永磁同步电机模型预测共模电压抑制方法存在寻优计算量大、开关频率较高、稳态性能不佳的问题,提出一种改进型模型预测电流控制.首先,改进六相两电平逆变器,降低零矢量共模电压幅值;其次,选择小共模电压矢量构造虚拟电压矢量,简化价值函数的同时减小共模电压和电流谐波含量;再次,通过计算参考电压矢量直接选择最优电压矢量以减少寻优次数,并引入占空比控制提升电机控制精度,改善电机稳态性能.最后,仿真对比传统模型预测电流控制、RCMV(Reduced Common Mode Voltage)-1、RCMV-2和所提控制方法.结果表明,所提控制方法在减小共模电压的同时,降低了转矩脉动和谐波电流,且较RCMV-2方法开关频率明显降低;此外,寻优代码执行时间相较于RCMV-1和RCMV-2分别降低了约91%和65%,减小了计算量.
文摘Short-circuit fault current suppression is a very important issue in modern large-interconnected power networks. Conventional short-circuit current limiters, such as superconducting fault current limiters, have to increase additional equipment investments. Fast power electronics controlled flexible AC transmission system(FACTS)devices have opened a new way for suppressing the fault current levels, while maintaining their normal functionalities for steady-state and transient power system operation and control. Thyristor controlled phase shifting transformer(TCPST) is a beneficial FACTS device in modern power systems, which is capable of regulating regional powerflow. The mathematical model for TCPST under different operation modes is firstly investigated in this study. Intuitively, the phase shifting angle control can adjust the equivalent impedance of TCPST, but the effect has been demonstrated to be weak. Therefore, a novel transformer excitation impedance switching(EIS) control method, is proposed for fault current suppressing, according to the impedance characteristics of TCPST. Simulation results on IEEE 14-bus system have shown considerable current limiting characteristic of the EIS control under various fault types. Also, analysis of the timing requirement during fault interruption, overvoltage phenomenon, and ancillary mechanical support issues during EIS control is discussed,so as to implement the proposed EIS control properly for fast fault current suppression.