Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p...Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.展开更多
Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with...Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M).展开更多
The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance...The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance to understand the scaling mechanisms and develop efficient anti-scaling strategies.However,the underlying surface interaction mechanisms of scalants(e.g.,calcite)with various substrates are still not fully understood.In this work,the colloidal probe atomic force microscopy(AFM)technique has been applied to directly quantify the surface forces between calcite particles and different metallic substrates,including carbon steel(CR1018),low alloy steel(4140),stainless steel(SS304)and tungsten carbide,under different water chemistries(i.e.,salinity and pH).Measured force profiles revealed that the attractive van der Waals(VDW)interaction contributed to the attachment of the calcium carbonate particles on substrate surfaces,while the repulsive electric double layer(EDL)interactions could inhibit the attachment behaviors.High salinity and acidic p H conditions of aqueous solutions could weaken the EDL repulsion and promote the attachment behavior.The adhesion of calcite particles with CR1018 and4140 substrates was much stronger than that with SS304 and tungsten carbide substrates.The bulk scaling tests in aqueous solutions from an industrial oil production process showed that much more severe scaling behaviors of calcite was detected on CR1018 and 4140 than those on SS304 and tungsten carbide,which agreed with surface force measurement results.Besides,high salinity and acidic p H can significantly enhance the scaling phenomena.This work provides fundamental insights into the scaling mechanisms of calcite at the nanoscale with practical implications for the selection of suitable antiscaling materials in petroleum industries.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.展开更多
[Objectives]The paper was to explore the impact of different cultivation substrates on the growth of Cymbidium goeringii.[Methods]The impact of 13 distinct cultivation substrates on the growth of C.goeringii was exami...[Objectives]The paper was to explore the impact of different cultivation substrates on the growth of Cymbidium goeringii.[Methods]The impact of 13 distinct cultivation substrates on the growth of C.goeringii was examined using C.goeringii as the test material.[Results]The combination of burning red clay particles(15%),No.4 pine bark(15%),No.3 pine bark(60%),and perlite(10%),as well as the mixture of burning red clay particles(20%),No.4 pine bark(15%),No.3 pine bark(55%),and perlite(10%),yielded superior results.These formulations resulted in an increased number of new roots in C.goeringii,a reduction in the incidence of decayed roots,and enhancements in the number of tillers,new leaves,and flowers.[Conclusions]The selection of substrates may serve as a valuable reference for the cultivation of C.goeringii.展开更多
This work shows that despite a lattice mismatch of almost 20%, CdMnTe/CdTe/CdMnTe heterostructures grown directly on Si(111) have surprisingly good optical emission properties. The investigated structures were grown b...This work shows that despite a lattice mismatch of almost 20%, CdMnTe/CdTe/CdMnTe heterostructures grown directly on Si(111) have surprisingly good optical emission properties. The investigated structures were grown by molecular beam epitaxy and characterized by scanning transmission electron microscopy, macro-and micro-photoluminescence. Low temperature macro-photoluminescence experiments indicate three emission bands which depend on the CdTe layer thickness and have different confinement characteristics. Temperature measurements reveal that the lower energy emission band (at 1.48 eV)is associated to defects and bound exciton states, while the main emission at 1.61 eV has a weak 2D character and the higher energy one at 1.71 eV has a well-defined (zero-dimensional, 0D) 0D nature. Micro-photoluminescence measurements show the existence of sharp and strongly circularly polarized (up to 40%) emission lines which can be related to the presence of Mn in the heterostructure. This result opens the possibility of producing photon sources with the typical spin control of the diluted magnetic semiconductors using the low-cost silicon technology.展开更多
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ...Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.展开更多
Self-standing carbon-based substrates with satisfied structural stability and property adjustability have promising applications in flexible lithium(Li)metal batteries(FLMBs).Current strategies for modifying carbon ma...Self-standing carbon-based substrates with satisfied structural stability and property adjustability have promising applications in flexible lithium(Li)metal batteries(FLMBs).Current strategies for modifying carbon materials are normally carried out on powder carbon,and very few of them are suitable for self-standing carbon substrates.Herein,a pore-forming strategy based on the redox chemistry of metallic oxide nanodots is developed to prepare two porous carbon substrates for anode and cathode.Starting with cotton cloth,the resulting hollow carbon fibers substrate with nanopores effectively prevents from Li dendrites formation and large volume change in lithium metal anode(LMA).Simulations indicate that the porous structure leads to homogeneous ion flux,Li-ion concentration,and electric field during Li deposition.Li symmetrical cell based on this substrate remains stable for 8300 h with an ultralow voltage hysteresis of 9 mV.Via a similar route,porous carbon cloth substrate is obtained for subsequently seeding V_(2)O_(5)nanowires to prepare the cathode.The assembled FLMBs pouch cell delivers a capacity of 8.2 mAh with a high capacity retention of~100%even under dramatic deformation.The demonstrated strategy has far-reaching potential in preparing free-standing porous carbon-based materials for flexible energy storage devices.展开更多
Taro is cultivated in most Regions of Cameroon and it is affected by taro leaf blight disease since 2010 which has decreased its production. Lack of disease-free planting materials has been a main problem to farmers. ...Taro is cultivated in most Regions of Cameroon and it is affected by taro leaf blight disease since 2010 which has decreased its production. Lack of disease-free planting materials has been a main problem to farmers. This study was carried out at International Institute of Tropical Agriculture (IITA) Yaounde and Institute of Agricultural Research for Development (IRAD) Bambui to assess different substrates for acclimatization of tissue culture taro plantlets in apropagator. No information is available on acclimatization of Cameroonian taro plantlets in different substrates. Taro plantlets from tissue culture were acclimatised in a propagator for six weeks under different substrates, the first substrate consisted of sterile three parts of soil and one part of river sand mixed together (3:1), the second substrate consisted of sterile two parts of soil and two parts of river sand mixed together (2:2), the third substrate consisted of sterile two parts of soil, one part of rice husk and one part of river sand mixed together (2:1:1) and the fourth substrate consisted of sterile one part of soil and three parts of river sand mixed together (1:3). After acclimatisation of the different taroplantlets (Dark green petiole with small leaves (L1), Red petiole with small leaves (L2), Light green petiole with large leaves (L3) and Light green petiole with small leaves (L4) in these four substrates, it was observed that the best growth rate of plant was recorded on substrate sand + soil (1:3). The other substrates showed moderate growth of plants. Substrate sand + soil (1:3) can be recommended for acclimatization of Cameroonian taro plantlets.展开更多
Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum depo...Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum deposited layers were known to consist of two consecutive layers. In this article, Cu-phthalocyanine was deposited on the glass substrate inclined at several angles. The thickness of the first layer was found to be dependent on the substrate angle.展开更多
The fruit fly Bactrocera dorsalis Hendel is a major constraint to mango production in Burkina Faso. The objective of this study was to evaluate the performance of two types of food substrates in optimizing the mass re...The fruit fly Bactrocera dorsalis Hendel is a major constraint to mango production in Burkina Faso. The objective of this study was to evaluate the performance of two types of food substrates in optimizing the mass rearing of B. dorsalis larvae. For this purpose, 200 eggs of B. dorsalis were divided into four batches of 50 eggs and incubated in Petri dishes containing the different food substrates (Diet 1 and Diet 2). This method was used to evaluate the rate and duration of egg hatching, as well as the development time of the different larval stages. In addition, 1200 pupae divided into four batches of 300 pupae, contained in PVC tubes, were placed inside the rearing cages to monitor the emergence of B. dorsalis. Ten pairs of B. dorsalis were placed in rearing cages and fed with Enzymatic Yeast Hydrolysate and sugar to evaluate the fecundity of female flies and the survival of both sexes. The developmental cycle length in Diet 1 and Diet 2 was 23.03 days and 23.24 days, respectively. Fecundity duration ranged from 57.75 ± 2.29 to 109.81 ± 3.81 days for females from Diet 1 and Diet 2, respectively. The pupal hatching rate varied significantly (P B. dorsalis, but the spawning index was 4 times higher with Diet 1. Most of the components of Diet 1 are available on the local market and are cheaper. Thus, we recommend the use of Diet 1 for B. dorsalis larvae mass rearing.展开更多
A commercial epi-ready(201)β-Ga_(2)O_(3) wafer was investigated upon diamond sawing into pieces measuring 2.5×3 mm^(2).The defect structure and crystallinity in the cut samples has been studied by X-ray diffract...A commercial epi-ready(201)β-Ga_(2)O_(3) wafer was investigated upon diamond sawing into pieces measuring 2.5×3 mm^(2).The defect structure and crystallinity in the cut samples has been studied by X-ray diffraction and a selective wet etching technique.The density of defects was estimated from the average value of etch pits calculated,including near-edge regions,and was obtained close to 109 cm^(-2).Blocks with lattice orientation deviated by angles of 1-3 arcmin,as well as non-stoichiometric fractions with a relative strain about(1.0-1.5)×10^(-4)in the[201]direction,were found.Crystal perfection was shown to decrease significantly towards the cutting lines of the samples.To reduce the number of structural defects and increase the crystal perfection of the samples via increasing defect motion mobility,the thermal annealing was employed.Polygonization and formation of a mosaic structure coupled with dislocation wall appearance upon 3 h of annealing at 1100℃ was observed.The fractions characterized by non-stoichiometry phases and the block deviation disappeared.The annealing for 11 h improved the homogeneity and perfection in the crystals.The average density of the etch pits dropped down significantly to 8×10^(6) cm^(-2).展开更多
In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improv...In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance.The breakdown voltage(BV)is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92μm.A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V.The maximum oscillation frequency(f_(max))and unity current gain cut-off frequency(f_(t))of the AlGaN/GaN HEMTs exceed 30 and 20 GHz,respectively.The results demonstrate the potential of AlGaN/GaN HEMTs on freestanding GaN substrates for microwave power applications.展开更多
A crack-free AlN film with 4.5 μm thickness was grown on a 2-inch hole-type nano-patterned sapphire substrates(NPSSs) by hydride vapor phase epitaxy(HVPE). The coalescence, stress evolution, and dislocation annihilat...A crack-free AlN film with 4.5 μm thickness was grown on a 2-inch hole-type nano-patterned sapphire substrates(NPSSs) by hydride vapor phase epitaxy(HVPE). The coalescence, stress evolution, and dislocation annihilation mechanisms in the AlN layer have been investigated. The large voids located on the pattern region were caused by the undesirable parasitic crystallites grown on the sidewalls of the nano-pattern in the early growth stage. The coalescence of the c-plane AlN was hindered by these three-fold crystallites and the special triangle void appeared. The cross-sectional Raman line scan was used to characterize the change of stress with film thickness, which corresponds to the characteristics of different growth stages of AlN. Threading dislocations(TDs) mainly originate from the boundary between misaligned crystallites and the c-plane AlN and the coalescence of two adjacent c-plane AlN crystals, rather than the interface between sapphire and AlN.展开更多
The demand for medicinal plants at the origin of phyto-drugs,like all ethnobotanical plants,threatens their existence today.The aim of this work was to determine suitable methods for optimizing the possibilities of re...The demand for medicinal plants at the origin of phyto-drugs,like all ethnobotanical plants,threatens their existence today.The aim of this work was to determine suitable methods for optimizing the possibilities of regenerating Stereospermum kunthianum.To achieve this objective,3 levels of mechanical scarification(light scarification,medium scarification and deep scarification)were applied to the seeds of this species using a rough instrument,and 5 days after germination,the seedlings were transplanted into 5 types of substrate to study their effects on seedling growth.The length of the seedlings was measured using a graduated ruler.The results obtained showed that the best latency time was 2 days for average seed scarifications.The highest germination half-time was 4.00±0.06 days observed for average seed scarification,the highest germination speed was 22.50±1.00 and the highest germination rate was 100.00%±0.00%for average scarification.The homogeneous substrate mixes black earth/woodsilk and Fine sand/woodsilk were more effective for seedling growth(1.9 cm/day in the juvenile state)and development.Medium seed scarification is the most effective method for regenerating Stereospermum kunthianum,and the black earth/wood shavings substrate mix is the best for its cultivation.展开更多
Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be...Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be used to construct near-field radiative modulators with excellent modulation effects.However,in practical applications,natural hyperbolic materials need to be deposited on the substrate,and the influence of substrate on modulation effect has not been studied yet.In this work,we investigate the influence of substrate effect on near-field radiative modulator based onα-MoO_(3).The results show that compared to the situation without a substrate,the presence of both lossless and lossy substrate will reduce the modulation contrast(MC)for different film thicknesses.When the real or imaginary component of the substrate permittivity increases,the mismatch of hyperbolic phonon polaritons(HPPs)weakens,resulting in a reduction in MC.By reducing the real and imaginary components of substrate permittivity,the MC can be significantly improved,reaching 4.64 forε_(s)=3 at t=10 nm.This work indicates that choosing a substrate with a smaller permittivity helps to achieve a better modulation effect,and provides guidance for the application of natural hyperbolic materials in the near-field radiative modulator.展开更多
The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un...The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.展开更多
Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electro...Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electron gas(2DEG)channel.The fabricated E-mode HEMTs exhibit a relatively high threshold voltage(VTH)of+1.1 V with good uniformity.A maxi-mum current/power gain cut-off frequency(fT/fMAX)of 31.3/99.6 GHz with a power added efficiency(PAE)of 52.47%and an out-put power density(Pout)of 1.0 W/mm at 3.5 GHz were achieved on the fabricated E-mode HEMTs with 1-μm gate and Au-free ohmic contact.展开更多
Melamine is one of the most frequently detected adulterants in dairy products.The current study proposes a surface-enhanced Raman spectroscopy(SERS)-based analytical tool for fast and reliable screening of melamine in...Melamine is one of the most frequently detected adulterants in dairy products.The current study proposes a surface-enhanced Raman spectroscopy(SERS)-based analytical tool for fast and reliable screening of melamine in bovine milk.A hand-held Raman spectrometer was used in conjunction with a substrate composed of silver nanoparticles(AgNPs)that was 2D printed onto glass fiber(GF)filter paper.Under optimized conditions,a sensitive and fingerprint-like signal at 674 cm^(-1) was obtained.The AgNPs/GF substrate exhibited high sensitivity to melamine in milk down to 1.9498×10^(-5)mg/mL,which is well below the USA and EU safety limits(2.5×10^(-3)mg/mL).Remarkably,the proposed technology was also highly reproducible,showing spot-to-spot and block-to-block variations below 3.3%and 4.9%at 674 cm^(-1) in Raman intensity,respectively.The characteristic peak intensity and concentration of melamine showed an acceptable linear relationship(R^(2)=0.9909)within the range of 0.0001-1 mg/mL.Overall,the method established in this study can provide an efficient and effective method for the quantitative target screening and detection of melamine in dairy products.展开更多
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat...The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.展开更多
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23E020002National Natural Science Foundation of China,Grant/Award Number:52272085 and 51972178+1 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2021J145China Postdoctoral Science Foundation,Grant/Award Number:2020M681966。
文摘Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.
基金supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park (Project HZQBKCZYB-2020030)National Key R&D Program of China (Project 2017YFA0204403)+2 种基金the National Natural Science Foundation of China (Project 51590892)the Major Program of Changsha Science and Technology (Project kh2003023)the Innovation and Technology Commission of HKSAR through Hong Kong Branch of National Precious Metals Material Engineering Research Centre,and the City University of Hong Kong (Project 9667207)。
文摘Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M).
基金support from Science Foundation of China University of Petroleum,Beijing (No.2462023QNXZ018)the Natural Sciences and Engineering Research Council of Canada (NSERC)+2 种基金Canada Foundation for Innovation (CFI)the Research Capacity Program (RCP)of Albertathe Canada Research Chairs Program。
文摘The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance to understand the scaling mechanisms and develop efficient anti-scaling strategies.However,the underlying surface interaction mechanisms of scalants(e.g.,calcite)with various substrates are still not fully understood.In this work,the colloidal probe atomic force microscopy(AFM)technique has been applied to directly quantify the surface forces between calcite particles and different metallic substrates,including carbon steel(CR1018),low alloy steel(4140),stainless steel(SS304)and tungsten carbide,under different water chemistries(i.e.,salinity and pH).Measured force profiles revealed that the attractive van der Waals(VDW)interaction contributed to the attachment of the calcium carbonate particles on substrate surfaces,while the repulsive electric double layer(EDL)interactions could inhibit the attachment behaviors.High salinity and acidic p H conditions of aqueous solutions could weaken the EDL repulsion and promote the attachment behavior.The adhesion of calcite particles with CR1018 and4140 substrates was much stronger than that with SS304 and tungsten carbide substrates.The bulk scaling tests in aqueous solutions from an industrial oil production process showed that much more severe scaling behaviors of calcite was detected on CR1018 and 4140 than those on SS304 and tungsten carbide,which agreed with surface force measurement results.Besides,high salinity and acidic p H can significantly enhance the scaling phenomena.This work provides fundamental insights into the scaling mechanisms of calcite at the nanoscale with practical implications for the selection of suitable antiscaling materials in petroleum industries.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.
基金Supported by Spark Program of Fujian Province(2021S0055).
文摘[Objectives]The paper was to explore the impact of different cultivation substrates on the growth of Cymbidium goeringii.[Methods]The impact of 13 distinct cultivation substrates on the growth of C.goeringii was examined using C.goeringii as the test material.[Results]The combination of burning red clay particles(15%),No.4 pine bark(15%),No.3 pine bark(60%),and perlite(10%),as well as the mixture of burning red clay particles(20%),No.4 pine bark(15%),No.3 pine bark(55%),and perlite(10%),yielded superior results.These formulations resulted in an increased number of new roots in C.goeringii,a reduction in the incidence of decayed roots,and enhancements in the number of tillers,new leaves,and flowers.[Conclusions]The selection of substrates may serve as a valuable reference for the cultivation of C.goeringii.
基金the financial support by the Brazilian funding agencies CAPES, CNPq (306201/2022-4)FAPEMIG (APQ-00371-17, APQ-02500-22, APQ-00388-22, and RED00223-23)FAPESP (2021/06803-4)。
文摘This work shows that despite a lattice mismatch of almost 20%, CdMnTe/CdTe/CdMnTe heterostructures grown directly on Si(111) have surprisingly good optical emission properties. The investigated structures were grown by molecular beam epitaxy and characterized by scanning transmission electron microscopy, macro-and micro-photoluminescence. Low temperature macro-photoluminescence experiments indicate three emission bands which depend on the CdTe layer thickness and have different confinement characteristics. Temperature measurements reveal that the lower energy emission band (at 1.48 eV)is associated to defects and bound exciton states, while the main emission at 1.61 eV has a weak 2D character and the higher energy one at 1.71 eV has a well-defined (zero-dimensional, 0D) 0D nature. Micro-photoluminescence measurements show the existence of sharp and strongly circularly polarized (up to 40%) emission lines which can be related to the presence of Mn in the heterostructure. This result opens the possibility of producing photon sources with the typical spin control of the diluted magnetic semiconductors using the low-cost silicon technology.
基金supported by the National Natural Science Foundation of China(Nos.52106099 and 51576004)the Natural Science Foundation of Shandong Province(No.ZR2022YQ57)the Taishan Scholars Program.
文摘Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.
基金supported by NSFC(22035001,21574018,51433003)the National Science and Engineering Council of Canada,and the Fundamental Research Funds for the Central Universities(2412019ZD002)。
文摘Self-standing carbon-based substrates with satisfied structural stability and property adjustability have promising applications in flexible lithium(Li)metal batteries(FLMBs).Current strategies for modifying carbon materials are normally carried out on powder carbon,and very few of them are suitable for self-standing carbon substrates.Herein,a pore-forming strategy based on the redox chemistry of metallic oxide nanodots is developed to prepare two porous carbon substrates for anode and cathode.Starting with cotton cloth,the resulting hollow carbon fibers substrate with nanopores effectively prevents from Li dendrites formation and large volume change in lithium metal anode(LMA).Simulations indicate that the porous structure leads to homogeneous ion flux,Li-ion concentration,and electric field during Li deposition.Li symmetrical cell based on this substrate remains stable for 8300 h with an ultralow voltage hysteresis of 9 mV.Via a similar route,porous carbon cloth substrate is obtained for subsequently seeding V_(2)O_(5)nanowires to prepare the cathode.The assembled FLMBs pouch cell delivers a capacity of 8.2 mAh with a high capacity retention of~100%even under dramatic deformation.The demonstrated strategy has far-reaching potential in preparing free-standing porous carbon-based materials for flexible energy storage devices.
文摘Taro is cultivated in most Regions of Cameroon and it is affected by taro leaf blight disease since 2010 which has decreased its production. Lack of disease-free planting materials has been a main problem to farmers. This study was carried out at International Institute of Tropical Agriculture (IITA) Yaounde and Institute of Agricultural Research for Development (IRAD) Bambui to assess different substrates for acclimatization of tissue culture taro plantlets in apropagator. No information is available on acclimatization of Cameroonian taro plantlets in different substrates. Taro plantlets from tissue culture were acclimatised in a propagator for six weeks under different substrates, the first substrate consisted of sterile three parts of soil and one part of river sand mixed together (3:1), the second substrate consisted of sterile two parts of soil and two parts of river sand mixed together (2:2), the third substrate consisted of sterile two parts of soil, one part of rice husk and one part of river sand mixed together (2:1:1) and the fourth substrate consisted of sterile one part of soil and three parts of river sand mixed together (1:3). After acclimatisation of the different taroplantlets (Dark green petiole with small leaves (L1), Red petiole with small leaves (L2), Light green petiole with large leaves (L3) and Light green petiole with small leaves (L4) in these four substrates, it was observed that the best growth rate of plant was recorded on substrate sand + soil (1:3). The other substrates showed moderate growth of plants. Substrate sand + soil (1:3) can be recommended for acclimatization of Cameroonian taro plantlets.
文摘Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum deposited layers were known to consist of two consecutive layers. In this article, Cu-phthalocyanine was deposited on the glass substrate inclined at several angles. The thickness of the first layer was found to be dependent on the substrate angle.
文摘The fruit fly Bactrocera dorsalis Hendel is a major constraint to mango production in Burkina Faso. The objective of this study was to evaluate the performance of two types of food substrates in optimizing the mass rearing of B. dorsalis larvae. For this purpose, 200 eggs of B. dorsalis were divided into four batches of 50 eggs and incubated in Petri dishes containing the different food substrates (Diet 1 and Diet 2). This method was used to evaluate the rate and duration of egg hatching, as well as the development time of the different larval stages. In addition, 1200 pupae divided into four batches of 300 pupae, contained in PVC tubes, were placed inside the rearing cages to monitor the emergence of B. dorsalis. Ten pairs of B. dorsalis were placed in rearing cages and fed with Enzymatic Yeast Hydrolysate and sugar to evaluate the fecundity of female flies and the survival of both sexes. The developmental cycle length in Diet 1 and Diet 2 was 23.03 days and 23.24 days, respectively. Fecundity duration ranged from 57.75 ± 2.29 to 109.81 ± 3.81 days for females from Diet 1 and Diet 2, respectively. The pupal hatching rate varied significantly (P B. dorsalis, but the spawning index was 4 times higher with Diet 1. Most of the components of Diet 1 are available on the local market and are cheaper. Thus, we recommend the use of Diet 1 for B. dorsalis larvae mass rearing.
基金funded by the Russian Science Foundation,project#23-29-10196。
文摘A commercial epi-ready(201)β-Ga_(2)O_(3) wafer was investigated upon diamond sawing into pieces measuring 2.5×3 mm^(2).The defect structure and crystallinity in the cut samples has been studied by X-ray diffraction and a selective wet etching technique.The density of defects was estimated from the average value of etch pits calculated,including near-edge regions,and was obtained close to 109 cm^(-2).Blocks with lattice orientation deviated by angles of 1-3 arcmin,as well as non-stoichiometric fractions with a relative strain about(1.0-1.5)×10^(-4)in the[201]direction,were found.Crystal perfection was shown to decrease significantly towards the cutting lines of the samples.To reduce the number of structural defects and increase the crystal perfection of the samples via increasing defect motion mobility,the thermal annealing was employed.Polygonization and formation of a mosaic structure coupled with dislocation wall appearance upon 3 h of annealing at 1100℃ was observed.The fractions characterized by non-stoichiometry phases and the block deviation disappeared.The annealing for 11 h improved the homogeneity and perfection in the crystals.The average density of the etch pits dropped down significantly to 8×10^(6) cm^(-2).
文摘In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance.The breakdown voltage(BV)is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92μm.A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V.The maximum oscillation frequency(f_(max))and unity current gain cut-off frequency(f_(t))of the AlGaN/GaN HEMTs exceed 30 and 20 GHz,respectively.The results demonstrate the potential of AlGaN/GaN HEMTs on freestanding GaN substrates for microwave power applications.
基金supported by the National Natural Science Foundation of China (Grant No. 61974158)the Natural Science Fund of Jiangsu Province, China (Grant No. BK20191456)。
文摘A crack-free AlN film with 4.5 μm thickness was grown on a 2-inch hole-type nano-patterned sapphire substrates(NPSSs) by hydride vapor phase epitaxy(HVPE). The coalescence, stress evolution, and dislocation annihilation mechanisms in the AlN layer have been investigated. The large voids located on the pattern region were caused by the undesirable parasitic crystallites grown on the sidewalls of the nano-pattern in the early growth stage. The coalescence of the c-plane AlN was hindered by these three-fold crystallites and the special triangle void appeared. The cross-sectional Raman line scan was used to characterize the change of stress with film thickness, which corresponds to the characteristics of different growth stages of AlN. Threading dislocations(TDs) mainly originate from the boundary between misaligned crystallites and the c-plane AlN and the coalescence of two adjacent c-plane AlN crystals, rather than the interface between sapphire and AlN.
文摘The demand for medicinal plants at the origin of phyto-drugs,like all ethnobotanical plants,threatens their existence today.The aim of this work was to determine suitable methods for optimizing the possibilities of regenerating Stereospermum kunthianum.To achieve this objective,3 levels of mechanical scarification(light scarification,medium scarification and deep scarification)were applied to the seeds of this species using a rough instrument,and 5 days after germination,the seedlings were transplanted into 5 types of substrate to study their effects on seedling growth.The length of the seedlings was measured using a graduated ruler.The results obtained showed that the best latency time was 2 days for average seed scarifications.The highest germination half-time was 4.00±0.06 days observed for average seed scarification,the highest germination speed was 22.50±1.00 and the highest germination rate was 100.00%±0.00%for average scarification.The homogeneous substrate mixes black earth/woodsilk and Fine sand/woodsilk were more effective for seedling growth(1.9 cm/day in the juvenile state)and development.Medium seed scarification is the most effective method for regenerating Stereospermum kunthianum,and the black earth/wood shavings substrate mix is the best for its cultivation.
基金Project supported by the National Natural Science Foundation of China (Grant No.52106099)the Natural Science Foundation of Shandong Province of China (Grant No.ZR2022YQ57)the Taishan Scholars Program。
文摘Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be used to construct near-field radiative modulators with excellent modulation effects.However,in practical applications,natural hyperbolic materials need to be deposited on the substrate,and the influence of substrate on modulation effect has not been studied yet.In this work,we investigate the influence of substrate effect on near-field radiative modulator based onα-MoO_(3).The results show that compared to the situation without a substrate,the presence of both lossless and lossy substrate will reduce the modulation contrast(MC)for different film thicknesses.When the real or imaginary component of the substrate permittivity increases,the mismatch of hyperbolic phonon polaritons(HPPs)weakens,resulting in a reduction in MC.By reducing the real and imaginary components of substrate permittivity,the MC can be significantly improved,reaching 4.64 forε_(s)=3 at t=10 nm.This work indicates that choosing a substrate with a smaller permittivity helps to achieve a better modulation effect,and provides guidance for the application of natural hyperbolic materials in the near-field radiative modulator.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51901163 and 12104171)the Fundamental Research Funds for the Central Universities(Grant No.2021XXJS025).
文摘The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3604400in part by the Youth Innovation Promotion Association of Chinese Academy Sciences(CAS)+4 种基金in part by CAS-Croucher Funding Scheme under Grant CAS22801in part by National Natural Science Foundation of China under Grant 62074161,Grant 62004213,and Grant U20A20208in part by the Beijing Municipal Science and Technology Commission project under Grant Z201100008420009 and Grant Z211100007921018in part by the University of CASin part by IMECAS-HKUST-Joint Laboratory of Microelectronics.
文摘Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electron gas(2DEG)channel.The fabricated E-mode HEMTs exhibit a relatively high threshold voltage(VTH)of+1.1 V with good uniformity.A maxi-mum current/power gain cut-off frequency(fT/fMAX)of 31.3/99.6 GHz with a power added efficiency(PAE)of 52.47%and an out-put power density(Pout)of 1.0 W/mm at 3.5 GHz were achieved on the fabricated E-mode HEMTs with 1-μm gate and Au-free ohmic contact.
基金supported by National Natural Science Foundation of China(21804058)Shanxi Scholarship Council of China(2021-068)+1 种基金Shanxi Agricultural University High-Level Talent Project(2021XG013)Shanxi Postdoc Reward(SXBYKY2022001).
文摘Melamine is one of the most frequently detected adulterants in dairy products.The current study proposes a surface-enhanced Raman spectroscopy(SERS)-based analytical tool for fast and reliable screening of melamine in bovine milk.A hand-held Raman spectrometer was used in conjunction with a substrate composed of silver nanoparticles(AgNPs)that was 2D printed onto glass fiber(GF)filter paper.Under optimized conditions,a sensitive and fingerprint-like signal at 674 cm^(-1) was obtained.The AgNPs/GF substrate exhibited high sensitivity to melamine in milk down to 1.9498×10^(-5)mg/mL,which is well below the USA and EU safety limits(2.5×10^(-3)mg/mL).Remarkably,the proposed technology was also highly reproducible,showing spot-to-spot and block-to-block variations below 3.3%and 4.9%at 674 cm^(-1) in Raman intensity,respectively.The characteristic peak intensity and concentration of melamine showed an acceptable linear relationship(R^(2)=0.9909)within the range of 0.0001-1 mg/mL.Overall,the method established in this study can provide an efficient and effective method for the quantitative target screening and detection of melamine in dairy products.
基金supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (MSIT),Korea (NRF-2021R1C1C1009200 and 2023R1A2C3007358)supported by the Defense Challengeable Future Technology Program of the Agency for Defense Development,Republic of Koreasupported by Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT) (20016588)funded by Ministry of Trade,Industry and Energy (MOTIE).
文摘The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.