Fluoropolymer and different kinds of silica particles were used for controlling surface chemistry and morphology, respectively. A superhydrophobic surface originated from strawberry-like or quincunx-shaped composite s...Fluoropolymer and different kinds of silica particles were used for controlling surface chemistry and morphology, respectively. A superhydrophobic surface originated from strawberry-like or quincunx-shaped composite silica particles was obtained. The dual size particles are obtained by utilizing the graft of different modified silica particles with epoxy functional group and amine functional group, This makes the surface of film form a composite interface to have irregular binary structure which plays an essential role in trapping air between the substrate surface and the liquid droplets to be necessary for high contact angle and low contact angle hysteresis. The maximum contact angle for water on the hybrid film is about 174±2° and the contact angle hysteresis is less than 2°. The surface morphologies, roughness and the wettability on the surface of films containing different structural silica particles were compared. It was shown that the hierarchical irregularly structure with a low roughness factor and high air-trapped ratio is indispensable for superhydrophobic surface. Although this structural surfaces based on composite silica particles play a vital role in governing the surface wettability, it is necessary to combine with a low surface energy to make the surface superhydrophobic.展开更多
Lithium metal anode holds an important position in fast-charging batteries.But lithium dendrite issues tend to exacerbate at high currents.Li F can be considered as an effective way to improve the Li metal surface ele...Lithium metal anode holds an important position in fast-charging batteries.But lithium dendrite issues tend to exacerbate at high currents.Li F can be considered as an effective way to improve the Li metal surface electrochemical stability to achieve high power and high energy.However,most of reported work are relying on in situ formation of a 2D Li F on Li metal in liquid electrolyte,which limits the scalability and plated Li quantity.Here,we address this challenge and report a scalable synthesis of Li F-rich 3D architected Li metal anode via a direct pyrolysis of molten lithium and fluoropolymer to enable fast Li charging with high current density(20 mA cm-2)and high areal capacity(20 m Ah cm-2).The 3D structure is synthesized by the pyrolysis of fluoropolymer with Li metal and results show high similarity to the pristine electrolyte-derived solid-electrolyte-interphase(SEI).This concept using pyrolysis of fluoropolymer with Li-containing active materials could be also extended to modify Li metal oxide cathode(e.g.,Li Ni0.5Mn1.5O4)for mixed conductive interphase and engineer Li solid ion conductors(e.g.,Li garnet-type oxides)for interface stabilization andframework design.展开更多
UV-curable perfluoropolyether (PFPE)-based fluoropolymer (PFPE-DMA) was synthesized and the photocuring behaviors of PFPE-DMA/HDDA systems with and without tertiary triethyl amine (TEA) were investigated using photo-D...UV-curable perfluoropolyether (PFPE)-based fluoropolymer (PFPE-DMA) was synthesized and the photocuring behaviors of PFPE-DMA/HDDA systems with and without tertiary triethyl amine (TEA) were investigated using photo-DSC under air and nitrogen atmospheres. Photo-DSC analysis revealed that N2 purging and the presence of TEA mitigated oxygen inhibition in the photopolymerization of the UV-curable free-radical PFPE-DMA/ HDDA system. In addition, TEA synergistically acted as a coinitiator or photosynergist under nitrogen atmosphere, which increased the cure rate and percentage conversion for the photopolymerization of PFPE-DMA/ HDDA. TEA acted as both oxygen scavenger and photosynergist. The results presented here demonstrate that investigating the photocuring behaviors of PFPE-DMA/HDDA systems is very helpful to determine the optimal curing conditions for the PFPE-DMA fluoropolymer.展开更多
The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are presented. Analysis of mathematical models for interaction of elastoplastic projectile ...The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are presented. Analysis of mathematical models for interaction of elastoplastic projectile and target without taking additional energy released during interaction of fluoropolymer and aluminum into consideration is carried out. Energy fraction which is spent effectively on the increase in cavity volume is determined. The experimental and calculated results of penetration by combined and inert projectiles are compared.展开更多
In this paper, the relationship between radiation crosslinking parameter β and the molecular internal rotating steric factor (σ) for fluoropolymers were studied. An expression calculating the molecular internal rota...In this paper, the relationship between radiation crosslinking parameter β and the molecular internal rotating steric factor (σ) for fluoropolymers were studied. An expression calculating the molecular internal rotating steric factor of fluoropolymers, σ=1.44+(β-0.206)/1.946, was established. σ value obtained by this method is in agreement with that given in the literature.展开更多
In this paper, the effect of irradiation temperature on sol fraction-dose relationship of tluoropolymers was studied. It was found that the increasing of irradiation temperature can result in the decreasing of β valu...In this paper, the effect of irradiation temperature on sol fraction-dose relationship of tluoropolymers was studied. It was found that the increasing of irradiation temperature can result in the decreasing of β value of fluoropolymer, which increases the crosslinking probability of fluoropolymer. The relationship between crosslinking parameter β and irradiation temperature (T_i)of fluoropolymer is established as follows:β=2.2×10^(-3) T_g+4×10^(-4)(T_g-T_i)+0.206.values of some tluoropolymers calculated from the above expression are in agreement with the experimental values.展开更多
We report a method for the coacervation micro-encapsulation of several forms of CaCO3 microparticles with the fluoropolymer poly(heptadecafluorodecyl acrylate) (poly (HDFDA)) by pressure-induced phase separation of a ...We report a method for the coacervation micro-encapsulation of several forms of CaCO3 microparticles with the fluoropolymer poly(heptadecafluorodecyl acrylate) (poly (HDFDA)) by pressure-induced phase separation of a supercritical CO2 solution.? A suspension of CaCO3 in CO2 and dissolved poly(HDFDA) were mixed in supercritical CO2.? After the system pressure was slowly decreased to atmospheric pressure, the microcapsules were obtained.? Coacervation was achieved by the precipitation of poly(HDFDA) during the decrease in the pressure of CO2;the solubility of poly(HDFDA) in CO2 decreased with the pressure.? The structure and morphology of the microparticles were investigated by using a scanning electron microscope (SEM) and an electron probe microanalyzer (EPMA) equipped with a wavelength dispersive X-ray spectroscope (WDX).展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subs...A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subsequently processed by dip-coating in an alcohol suspension of superdispersed polytetrafluoroethylene and spraying with the tetrafluoroethylene telomers solution.SEM,OSP,and SPM was used to study structure of formed surfaces.It was established by measurements of CA and CAH,as well as surface free energy calculations that formed coatings demonstrate superhydrophobic properties due to the presence of an irregular hierarchical surface structure and low surface free energy of fluoropolymers.The coating preserves its hydrophobic properties after exposure to high and low temperatures,for a long time as well as being in corrosive environments.EDS and XRD data analysis confirmed the presence of organofluorine compounds in the composite layers,including in the form of crystalline polytetrafluoroethylene.Using potentiodynamic polarization test and EIS,it was found that the resulting coatings significantly increase the corrosion resistance of Mg material.These data are also confirmed by salt spray tests for 40 days.Incorporation of fluoropolymers additionally decrease coatings coefficient of friction.展开更多
The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By vi...The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.展开更多
基金the National Natural Science Foundation of China(Grant No.20506005).
文摘Fluoropolymer and different kinds of silica particles were used for controlling surface chemistry and morphology, respectively. A superhydrophobic surface originated from strawberry-like or quincunx-shaped composite silica particles was obtained. The dual size particles are obtained by utilizing the graft of different modified silica particles with epoxy functional group and amine functional group, This makes the surface of film form a composite interface to have irregular binary structure which plays an essential role in trapping air between the substrate surface and the liquid droplets to be necessary for high contact angle and low contact angle hysteresis. The maximum contact angle for water on the hybrid film is about 174±2° and the contact angle hysteresis is less than 2°. The surface morphologies, roughness and the wettability on the surface of films containing different structural silica particles were compared. It was shown that the hierarchical irregularly structure with a low roughness factor and high air-trapped ratio is indispensable for superhydrophobic surface. Although this structural surfaces based on composite silica particles play a vital role in governing the surface wettability, it is necessary to combine with a low surface energy to make the surface superhydrophobic.
基金supported by the startup funding at University of Delaware
文摘Lithium metal anode holds an important position in fast-charging batteries.But lithium dendrite issues tend to exacerbate at high currents.Li F can be considered as an effective way to improve the Li metal surface electrochemical stability to achieve high power and high energy.However,most of reported work are relying on in situ formation of a 2D Li F on Li metal in liquid electrolyte,which limits the scalability and plated Li quantity.Here,we address this challenge and report a scalable synthesis of Li F-rich 3D architected Li metal anode via a direct pyrolysis of molten lithium and fluoropolymer to enable fast Li charging with high current density(20 mA cm-2)and high areal capacity(20 m Ah cm-2).The 3D structure is synthesized by the pyrolysis of fluoropolymer with Li metal and results show high similarity to the pristine electrolyte-derived solid-electrolyte-interphase(SEI).This concept using pyrolysis of fluoropolymer with Li-containing active materials could be also extended to modify Li metal oxide cathode(e.g.,Li Ni0.5Mn1.5O4)for mixed conductive interphase and engineer Li solid ion conductors(e.g.,Li garnet-type oxides)for interface stabilization andframework design.
文摘UV-curable perfluoropolyether (PFPE)-based fluoropolymer (PFPE-DMA) was synthesized and the photocuring behaviors of PFPE-DMA/HDDA systems with and without tertiary triethyl amine (TEA) were investigated using photo-DSC under air and nitrogen atmospheres. Photo-DSC analysis revealed that N2 purging and the presence of TEA mitigated oxygen inhibition in the photopolymerization of the UV-curable free-radical PFPE-DMA/ HDDA system. In addition, TEA synergistically acted as a coinitiator or photosynergist under nitrogen atmosphere, which increased the cure rate and percentage conversion for the photopolymerization of PFPE-DMA/ HDDA. TEA acted as both oxygen scavenger and photosynergist. The results presented here demonstrate that investigating the photocuring behaviors of PFPE-DMA/HDDA systems is very helpful to determine the optimal curing conditions for the PFPE-DMA fluoropolymer.
文摘The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are presented. Analysis of mathematical models for interaction of elastoplastic projectile and target without taking additional energy released during interaction of fluoropolymer and aluminum into consideration is carried out. Energy fraction which is spent effectively on the increase in cavity volume is determined. The experimental and calculated results of penetration by combined and inert projectiles are compared.
基金The project was supported by the research foundation of IAEA, Agency Research Contract No. 4316/RB
文摘In this paper, the relationship between radiation crosslinking parameter β and the molecular internal rotating steric factor (σ) for fluoropolymers were studied. An expression calculating the molecular internal rotating steric factor of fluoropolymers, σ=1.44+(β-0.206)/1.946, was established. σ value obtained by this method is in agreement with that given in the literature.
文摘In this paper, the effect of irradiation temperature on sol fraction-dose relationship of tluoropolymers was studied. It was found that the increasing of irradiation temperature can result in the decreasing of β value of fluoropolymer, which increases the crosslinking probability of fluoropolymer. The relationship between crosslinking parameter β and irradiation temperature (T_i)of fluoropolymer is established as follows:β=2.2×10^(-3) T_g+4×10^(-4)(T_g-T_i)+0.206.values of some tluoropolymers calculated from the above expression are in agreement with the experimental values.
文摘We report a method for the coacervation micro-encapsulation of several forms of CaCO3 microparticles with the fluoropolymer poly(heptadecafluorodecyl acrylate) (poly (HDFDA)) by pressure-induced phase separation of a supercritical CO2 solution.? A suspension of CaCO3 in CO2 and dissolved poly(HDFDA) were mixed in supercritical CO2.? After the system pressure was slowly decreased to atmospheric pressure, the microcapsules were obtained.? Coacervation was achieved by the precipitation of poly(HDFDA) during the decrease in the pressure of CO2;the solubility of poly(HDFDA) in CO2 decreased with the pressure.? The structure and morphology of the microparticles were investigated by using a scanning electron microscope (SEM) and an electron probe microanalyzer (EPMA) equipped with a wavelength dispersive X-ray spectroscope (WDX).
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金The study was supported by the Russian Science Foundation grant no.22-73-10149,https://rscf.ru/project/22-73-10149/.
文摘A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subsequently processed by dip-coating in an alcohol suspension of superdispersed polytetrafluoroethylene and spraying with the tetrafluoroethylene telomers solution.SEM,OSP,and SPM was used to study structure of formed surfaces.It was established by measurements of CA and CAH,as well as surface free energy calculations that formed coatings demonstrate superhydrophobic properties due to the presence of an irregular hierarchical surface structure and low surface free energy of fluoropolymers.The coating preserves its hydrophobic properties after exposure to high and low temperatures,for a long time as well as being in corrosive environments.EDS and XRD data analysis confirmed the presence of organofluorine compounds in the composite layers,including in the form of crystalline polytetrafluoroethylene.Using potentiodynamic polarization test and EIS,it was found that the resulting coatings significantly increase the corrosion resistance of Mg material.These data are also confirmed by salt spray tests for 40 days.Incorporation of fluoropolymers additionally decrease coatings coefficient of friction.
基金This work was supported by the National Natural Science Foundation of China(U1904216 and U22A20141)the Natural Science Foundation of Changsha City(kq2208258).
文摘The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.