期刊文献+
共找到31,823篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
1
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 Al-Cu alloy pre-hardened alloy natural aging mechanical properties MICROSTRUCTURE
下载PDF
Correlation between hardness and SEM-EDS characterization of palm oil waste based biocoke
2
作者 Asri Gani Erdiwansyah +5 位作者 Hera Desvita Saisa Mahidin Rizalman Mamat Zulhaini Sartika Ratna Eko Sarjono 《Energy Geoscience》 EI 2024年第4期253-266,共14页
This research investigates the relationship between hardness and microstructure obtained through SEM-EDS analysis of palm oil waste-based biocoke.The mechanical qualities and chemical composition of biocoke are being ... This research investigates the relationship between hardness and microstructure obtained through SEM-EDS analysis of palm oil waste-based biocoke.The mechanical qualities and chemical composition of biocoke are being studied concerning the influence of temperature conditions.The manufacturing temperature of biocoke may vary between 150℃ and 190℃.Utilizing SEM-EDS,we were able to characterize the microstructure and analyze the elemental composition,while the Hardness Shore D approach was used for the most complex materials.These results highlight the possibility of optimizing production temperature to produce biocoke with better mechanical performance.They show a positive correlation between biocoke hardness and structured carbon content.At 150℃ and 180℃,respectively,the EFB biocoke reached its maximum hardness level of 62±5.At 190℃,OPM biocoke generated a 60±5 times greater hardness than that of OPM and OPF biocoke.The OPT biocoke sample had the highest porosity with a score of 0.86,or 85.76%.Furthermore,compared to EFB biocoke,OPM and OPF biocokes had a priority of 0.84(84.20%)and 0.83(83.48%),respectively.Biocoke hardness is a quality indicator of physical and chemical qualities;the vital link between biocoke hardness,structural features,and elemental composition supports this idea. 展开更多
关键词 Biocoke Palm oil waste hardness SEM-EDS Processing temperature
下载PDF
Gravel hardness effect on compaction characteristics of gravelly soil
3
作者 SHI Yunfang LI Shengang +1 位作者 JIANG Chen LIU Jinning 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1432-1443,共12页
The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,he... The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction. 展开更多
关键词 Gravelly soil hardness Compaction characteristics Crushing characteristics Particle breakage rate Bailey method
下载PDF
Influence of heat input on microhardness and microstructure across the welding interface between stainless steel and low alloy steel
4
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第1期14-21,共8页
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl... The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects. 展开更多
关键词 welding interface transition layer heat input MICROSTRUCTURE hardness
下载PDF
Relationship between Hardness and Deformation during Cold Rolling Process of Complex Profles 被引量:1
5
作者 Dawei Zhang Linghao Hu +1 位作者 Bingkun Liu Shengdun Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期315-329,共15页
The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in ... The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superfcial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment refecting the uneven deformation during complex-profle rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples refecting the local deformation characteristics of complexprofle rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profle rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., ε < 1.2) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., ε > 1.2) of training samples can be well described by power regression model;so the correlation relationship between strain and hardness during complex-profle rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range ε < 1.2 and power function with a ftting constant in the range ε > 1.2;and the predicting error of the regression model by segmented function is less than 10%. 展开更多
关键词 Complex profle Cold rolling Multi passes Equivalent strain Vickers hardness
下载PDF
Dietary protein levels changed the hardness of muscle by acting on muscle fiber growth and the metabolism of collagen in sub-adult grass carp(Ctenopharyngodon idella) 被引量:1
6
作者 Min Dong Lu Zhang +8 位作者 Pei Wu Lin Feng Weidan Jiang Yang Liu Shengyao Kuang Shuwei Li Haifeng Mi Ling Tang Xiaoqiu Zhou 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第2期729-744,共16页
Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is ex... Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is expensive.Although our team found that the effect of protein on the muscle hardness of grass carp was probably related to an increased collagen content,the mechanism for this effect has not been deeply explored.Moreover,few studies have explored the protein requirements of sub-adult grass crap(Ctenopharyngodon idella).Therefore,the effects of different dietary protein levels on the growth performance,nutritional value,muscle hardness,muscle fiber growth,collagen metabolism and related molecule expression in grass carp were investigated.Methods:A total of 450 healthy grass carp(721.16±1.98 g)were selected and assigned randomly to six experimen-tal groups with three replicates each(n=25/replicate),and were fed six diets with 15.91%,19.39%,22.10%,25.59%,28.53%and 31.42%protein for 60 d.Results:Appropriate levels of dietary protein increased the feed intake,percentage weight gain,specific growth rate,body composition,unsaturated fatty acid content in muscle,partial free amino acid content in muscle,and muscle hardness of grass carp.These protein levels also increased the muscle fiber density,the frequency of new muscle fibers,the contents of collagen and IGF-1,and the enzyme activities of prolyl 4-hydroxylases and lysyloxidase,and decreased the activity of matrix metalloproteinase-2.At the molecular level,the optimal dietary protein increased col-lagen type Iα1(Colα1),Colα2,PI3K,Akt,S6K1,La ribonucleoprotein domain family member 6a(LARP6a),TGF-β1,Smad2,Smad4,Smad3,tissue inhibitor of metalloproteinase-2,MyoD,Myf5,MyoG and MyHC relative mRNA levels.The levels of the myostatin-1 and myostatin-2 genes were downregulated,and the protein expression levels of p-Smad2,Smad2,Smad4,p-Akt,Akt,LARP6 and Smad3 were increased.Conclusions:The appropriate levels of dietary protein promoted the growth of sub-adult grass carp and improved muscle hardness by promoting the growth of muscle fibers,improving collagen synthesis and depressing collagen degradation.In addition,the dietary protein requirements of sub-adult grass carp were 26.21%and 24.85%according to the quadratic regression analysis of growth performance(SGR)and the muscle hardness(collagen content),respectively. 展开更多
关键词 Collagen degradation Collagen synthesis Grass carp Muscle fibers Muscle hardness PROTEIN
下载PDF
Influence of quenching medium on the dendrite morphology,hardness,and tribological behaviour of cast Cu-Ni-Sn spinodal alloy for defence application 被引量:1
7
作者 Bipin Sankar Karthik V Shankar +4 位作者 Vamu Sunil Hemanth Kashyap S Nikhil Nair Adarsh A.Nair Abhinav P M 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期83-100,共18页
Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-ro... Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-road vehicles,and warships.This paper presents a comparative study using water,Brine solution,and SAE 40 oil as the quenching media in regular bronze(Cu-6Sn)and spinodal bronze(Cu-9Ni-6Sn)alloys.Morphological analysis was conducted by optical microscopy,transmission electron microscopy(TEM),and X-ray diffraction technique(XRD)on bronze and spinodal bronze samples immersed in the three different quenching media to understand the grain size and hardness values better.Tribological analysis was performed to analyze the effect of quenching media on the wear aspects of bronze and spinodal bronze samples.The hardness value of the brine-aged spinodal bronze samples was as high as 320 Hv,and the grain size was very low in the range of 60μm.A quantitative comparison between brine-aged regular bronze and brine-aged spinodal bronze showed that the hardness(Hv)was almost 80%higher for brine-aged spinodal bronze.Further,the grain size was approximately 30%finer for spinodal bronze when compared with regular bronze.When the load was increased in spinodal bronze samples,there was an initial dip in wear rate followed by a marginal increase.There was a steady increase in friction coefficient with a rise in load for brine-aged regular bronze and spinodal bronze samples.These results indicate that brine solution is the most effective quenching medium for cast Cu-Ni-Sn spinodal alloys. 展开更多
关键词 Quenching Water BRINE SAE 40 oil Grain size hardness Wear rate Spinodal decomposition CuSn Spinodal alloy CuNiSn
下载PDF
Friction welding influence on microstructure,microhardness and hardness behavior of CrNiMo steel(AISI 316)
8
作者 Ammar Jabbar Hassan Billel Cheniti +3 位作者 Brahim Belkessa Taoufik Boukharouba Djamel Miroud Nacer-Eddine Titouche 《China Welding》 CAS 2023年第3期21-27,共7页
For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MP... For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MPa,forge time of 5 s and forge pressure of 260 MPa.The results of microstructure showed that the temperature at the interface reached 819℃while forge applied between 357-237℃,which subdivided welded joint into four distinct regions of highly plastically deformed zone(HPDZ),thermo-mechanically affected zone(TMAZ),heat affected zone(HAZ)and the base metal,with grain size about 10µm,100µm,90µm and 30µm respectively.These re-gions were created due to dynamic recrystallization(DRX)at the interface and thermo-mechanical deformation with heat diffusion in the neighboring regions.Whereas,high level of microhardness about 300 HV0.1 and hardness roughly 240 Hv10 at the interface due to HPDZ creation while low level of 240 HV0.1 for microhardness and moderately of 205 HV10 for hardness in neighboring regions. 展开更多
关键词 friction welding austenitic stainless steel MICROSTRUCTURE MICROhardness hardness
下载PDF
Effect of Dynamic Strain Aging on Hardness in the Heat-Affected Zone of SUS316 Steel Welds
9
作者 Lina Yu Kazutoshi Nishimoto Kazuyoshi Saida 《材料科学与工程(中英文A版)》 2023年第1期13-25,共13页
DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS3... DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS316 in the peak temperature range of 20-700°C,with strain rates varying from 4.2×10^(-3)to 4.2×10^(-5)s^(-1).Based on the appearance of discontinuous plastic flows,expressed as serrations,and the hardening phenomenon of the tensile samples,the conditions for the occurrence of DSA in the SUS316 steel were investigated.Furthermore,the extent of hardening due to DSA was evaluated by comparing the hardness values of the SUS316 and SUS316EHP steels after the tensile tests.To confirm the effect of DSA on hardness in the HAZ of the welded SUS316 steel,non-isothermal tensile tests of the simulated HAZ thermal cycles were performed using a Thermec Master.The relationship between the increase in Vickers hardness due to DSA and the strain in the HAZ was determined;the effect of DSA on hardness in the HAZ could be predicted.The DSA in SUS316 steel was found to be mainly attributed to the dynamic interaction of dislocations with C and N interstitial atoms during high-temperature deformation. 展开更多
关键词 Dynamic strain aging hardness SERRATION heat-affected zone SUS316
下载PDF
A review of hard carbon anodes for rechargeable sodium-ion batteries
10
作者 MU Bao-yi CHI Chun-lei +7 位作者 YANG Xin-hou HUANGFU Chao QI Bin WANG Guan-wen LI Zhi-yuan SONG Lei WEI Tong FAN Zhuang-jun 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期796-823,共28页
Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,n... Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed. 展开更多
关键词 Sodium-ion battery hard carbon PRECURSOR ANODE NANOSTRUCTURE
下载PDF
THE SMOOTHING EFFECT IN SHARP GEVREY SPACE FOR THE SPATIALLY HOMOGENEOUS NON-CUTOFF BOLTZMANN EQUATIONS WITH A HARDPOTENTIAL
11
作者 刘吕桥 曾娟 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期455-473,共19页
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e... In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates. 展开更多
关键词 Boltzmann equation Gevrey regularity non-cutoff hard potential
下载PDF
Rational manipulation of electrolyte to induce homogeneous SEI on hard carbon anode for sodium-ion battery
12
作者 Lu Liu Lingling Xiao +4 位作者 Zhi Sun Shahid Bashir Ramesh Kasi Yonghong Gu Ramesh Subramaniam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期414-429,共16页
Sodium-ion batteries (SIBs) have great potential to be the next major energy storage devices due to their obvious advantages and developing advanced electrodes and electrolytes is urgently necessary to promote its fut... Sodium-ion batteries (SIBs) have great potential to be the next major energy storage devices due to their obvious advantages and developing advanced electrodes and electrolytes is urgently necessary to promote its future industrialization.However,hard carbon as a state-of-the-art anode of SIBs still suffers from the low initial Coulomb efficiency and unsatisfactory rate capability,which could be improved by forming desirable solid electrolyte interphases (SEI) to some extent.Indeed,the chemistry and morphology of these interfacial layers are fundamental parameters affecting the overall battery operation,and optimizing the electrolyte to dictate the quality of SEI on hard carbon is a key strategy.Hence,this review summarizes the recent research on SEI design by electrolyte manipulation from solvents,salts,and additives.It also presents some potential mechanisms of SEI formation in various electrolyte systems.Besides,the current advanced characterization techniques for electrolyte and SEI structure analyses have been comprehensively discussed.Lastly,current challenges and future perspectives of SEI formation on hard carbon anode for SIBs are provided from the viewpoints of its compositions,evolution processes,structures,and characterization techniques,which will promote SEI efficient manipulation and improve the performance of hard carbon,and further contribute to the development of SIBs. 展开更多
关键词 SEI Electrolyte optimization hard carbon Electrochemical performance Sodium-ion batteries
下载PDF
Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance
13
作者 Jingqiang Zheng Yulun Wu +6 位作者 Chaohong Guan Danjun Wang Yanqing Lai Jie Li Fuhua Yang Simin Li Zhian Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期235-244,共10页
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi... Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance. 展开更多
关键词 hard carbon LIGNIN SODIUM components sodium-ion storage SOLID ELECTROLYTE INTERPHASE
下载PDF
Synthesis strategies of hard carbon anodes for sodium-ion batteries
14
作者 Jian Yin Ye Shui Zhang +2 位作者 Hanfeng Liang Wenli Zhang Yunpei Zhu 《Materials Reports(Energy)》 EI 2024年第2期1-22,共22页
Sodium-ion battery(SIB)is an ideal candidate for large-scale energy storage due to high abundant sodium sources,relatively high energy density,and potentially low costs.Hard carbons,as one of the most promising anodes... Sodium-ion battery(SIB)is an ideal candidate for large-scale energy storage due to high abundant sodium sources,relatively high energy density,and potentially low costs.Hard carbons,as one of the most promising anodes,could deliver high plateau capacities at low potentials,which boosts the energy densities of SIBs.Their slope capacities have been demonstrated from the defect adsorption of sodium ions,while the plateau capacity depends highly on intercalation and pore filling.Nevertheless,the specific structures of sodium ions stored in hard carbons have not been clarified,namely active sites of adsorption,intercalation,and pore-filling mechanisms.Therefore,delicate synthesis methods are required to prepare hard carbons with controllable specific structures,along with elucidating the precise active sites for enhancing the Na-ion storage performance.To offer databases for future designs,we summarized the synthesis strategies of hard carbon anodes for constructing active sites of plateau capacities.Synthesis methods were highlighted with corresponding influences on the meticulous structures of hard carbons and Na-ion storage behaviors.Last but not least,perspectives were proposed for developing hard carbon anodes from the points of research and practical applications. 展开更多
关键词 hard CARBON anodeCarbon synthesisSodium-ion batteryStructure-function RELATIONSHIP
下载PDF
Influencing factors analysis of hard limestone reformation and strength weakening under acidic effect
15
作者 HOU Ming-xiao HUANG Bing-xiang +2 位作者 ZHAO Xing-long JIAO Xue-jie ZHENG Chen-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2446-2466,共21页
Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way t... Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way to control the hard limestone roof.In this study,the effects of various factors on the reaction characteristics and mechanical properties of limestone were analyzed.The results show that the acid with stronger hydrogen production capacity after ionization(pK_(a)<0)has more prominent damage to the mineral grains of limestone.When pKa increases from−8.00 to 15.70,uniaxial compressive strength and elastic modulus of limestone increase by 117.22%and 75.98%.The influence of acid concentration is manifested in the dissolution behavior of mineral crystals,the crystal defects caused by large-scale acid action will lead to the deterioration of limestone strength,and the strength after 15%concentration reformation can be reduced by 59.42%.The effect of acidification time on limestone has stages and is the most obvious in the initial metathesis reaction stage(within 60 min).The key to the strength damage of acidified limestone is the participation of hydrogen ions in the reaction system.Based on the analytic hierarchy process method,the influence weights of acid type,acid concentration and acidification time on strength are 24.30%,59.54% and 16.16%,respectively.The research results provide theoretical support for the acidification control of hard limestone roofs in coal mines. 展开更多
关键词 hard roof acidic effect structural reformation strength weakening influencing factors
下载PDF
High-efficiently doping nitrogen in kapok fiber-derived hard carbon used as anode materials for boosting rate performance of sodium-ion batteries
16
作者 Tianyun Zhang Tian Zhang +1 位作者 Fujuan Wang Fen Ran 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期472-482,共11页
The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performan... The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis. 展开更多
关键词 Kapok fiber hard carbon Electrode materials Rate performance Sodium-ion batteries
下载PDF
Assessment and control of the mine tremor disaster induced by the energy accumulation and dispersion of thick-hard roofs
17
作者 Bin Yu Mingxian Peng +1 位作者 Yang Tai Shuai Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期925-941,共17页
In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foun... In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foundation was adopted to establish the THR’s periodic breaking model.The superposition principle was used for this complex model to derive the calculation formulas of the elastic energy and impact load on hydraulic supports.Then,the influence of roof thickness h,cantilever length L_(1),and load q on THR’s elastic energy and impact load was analyzed.And,the effect of mine tremor disasters was assessed.Finally,it is revealed that:(1)The THR’s elastic energy U exhibits power-law variations,with the fitted relationships U=0.0096L_(1)^(3.5866^),U=5943.9h^(-1.935),and U=21.049q^(2).(2)The impact load on hydraulic supports F_(ZJ) increases linearly with an increase in the cantilever length,thickness,and applied load.The fitted relationships are F_(ZJ)=1067.3L_(1)+6361.1,F_(ZJ)=125.89h+15100,and F_(ZJ)=10420q+3912.6.(3)Ground hydraulic fracturing and liquid explosive deep-hole blasting techniques effectively reduce the THR’s cantilever length at periodic breakages,thus eliminating mine tremor disasters. 展开更多
关键词 Dynamic disaster Energy hard and thick roof Timoshenko beam
下载PDF
Deformation mechanism and roof pre-splitting control technology of gob-side entry in thick hard main roof full-mechanized longwall caving panel
18
作者 WANG Hao-sen HE Man-chao +6 位作者 WANG Jiong YANG Gang MAZi-min MING Can WANG Rui FENG Zeng-chao ZHANG Wen-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3206-3224,共19页
This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive appro... This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry. 展开更多
关键词 deformation mechanism hard roof gob-side entry cantilever beam roof pre-spliting
下载PDF
Regulating solid electrolyte interphase film on fluorinedoped hard carbon anode for sodium-ion battery
19
作者 Cuiyun Yang Wentao Zhong +4 位作者 Yuqiao Liu Qiang Deng Qian Cheng Xiaozhao Liu Chenghao Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期200-215,共16页
For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However... For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)). 展开更多
关键词 F-doping hard carbon reduction kinetics sodium-ion batteries solid electrolyte interphase film
下载PDF
The hard X-ray nanoprobe beamline at the SSRF
20
作者 Yan He Hui Jiang +6 位作者 Dong-Xu Liang Zhi-Sen Jiang Huai-Na Yu Hua Wang Cheng-Wen Mao Jia-Nan Xie Ai-Guo Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期79-88,共10页
The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 t... The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 to 10 nm. The X-ray energy range of the beamline, 5–25 keV, can detect most elements in the periodic table. Two operating modes were designed to accommodate the experimental requirements of high-energy resolution or high photon flux, respectively. X-ray nanofluorescence, nanodiffraction, and coherent diffraction imaging are developed as the main experimental techniques for BL13U. This paper describes the beamline optics, end station configurations, experimental methods under development, and preliminary test results. This comprehensive overview aims to provide a clear understanding of the beamline capabilities and potential applications. 展开更多
关键词 Shanghai synchrotron radiation facility hard X-ray nanoprobe X-ray nanofocusing
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部