期刊文献+
共找到1,322篇文章
< 1 2 67 >
每页显示 20 50 100
PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets
1
作者 JIANG Haipeng WU Guoqing +3 位作者 SUN Mengdan LI Feng SUN Yunfei FANG Wei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期965-975,共11页
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform... Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach. 展开更多
关键词 high utility itemset mining(HUIM) graphics process-ing unit(GPU)parallel genetic algorithm(GA) mining perfor-mance
下载PDF
Backward Support Computation Method for Positive and Negative Frequent Itemset Mining
2
作者 Mrinmoy Biswas Akash Indrani Mandal Md. Selim Al Mamun 《Journal of Data Analysis and Information Processing》 2023年第1期37-48,共12页
Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on p... Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on positive itemsets generated from frequently occurring itemsets (PFIS). However, there has been a significant study focused on infrequent itemsets with utilization of negative association rules to mine interesting frequent itemsets (NFIS) from transactions. In this work, we propose an efficient backward calculating negative frequent itemset algorithm namely EBC-NFIS for computing backward supports that can extract both positive and negative frequent itemsets synchronously from dataset. EBC-NFIS algorithm is based on popular e-NFIS algorithm that computes supports of negative itemsets from the supports of positive itemsets. The proposed algorithm makes use of previously computed supports from memory to minimize the computation time. In addition, association rules, i.e. positive and negative association rules (PNARs) are generated from discovered frequent itemsets using EBC-NFIS algorithm. The efficiency of the proposed algorithm is verified by several experiments and comparing results with e-NFIS algorithm. The experimental results confirm that the proposed algorithm successfully discovers NFIS and PNARs and runs significantly faster than conventional e-NFIS algorithm. 展开更多
关键词 Data Mining Positive Frequent itemset Negative Frequent itemset Association Rule Backward Support
下载PDF
基于滑动窗口含负项的高效用模式挖掘
3
作者 武妍 荀亚玲 马煜 《计算机工程与设计》 北大核心 2024年第3期845-851,共7页
针对传统高效用模式挖掘均未考虑项的效用值为负,以及对流数据处理的时效性问题,提出一种基于滑动窗口的高效用挖掘算法HUPN_SW。利用一种新定义的滑动窗口正负效用列表PNSWU-List,维护挖掘最近批次高效用模式集所需的所有信息,实现有... 针对传统高效用模式挖掘均未考虑项的效用值为负,以及对流数据处理的时效性问题,提出一种基于滑动窗口的高效用挖掘算法HUPN_SW。利用一种新定义的滑动窗口正负效用列表PNSWU-List,维护挖掘最近批次高效用模式集所需的所有信息,实现有效的逐批次挖掘,避免重复的数据库扫描,在不产生候选效用模式集的情况下,直接挖掘出高效用模式,使HUPN_SW有效适应于动态流数据。实验结果表明,HUPN_SW算法在运行时间和可扩展性方面有良好表现。 展开更多
关键词 频繁模式挖掘 滑动窗口 高效用模式挖掘 高效用项集 负效用 流数据 效用列表
下载PDF
数据流上的约束跨层级高效用项集挖掘
4
作者 刘淑娟 韩萌 +2 位作者 高智慧 穆栋梁 李昂 《计算机工程与应用》 CSCD 北大核心 2024年第13期287-300,共14页
传统的高效用项集挖掘算法无法发现不同抽象层级类别之间的关系。因此,有研究者提出了跨层级的高效用项集挖掘算法。针对当前跨层级的高效用项集挖掘算法仅能处理静态数据并且无法控制挖掘层级范围的问题,提出了一种动态类别列表结构DTU... 传统的高效用项集挖掘算法无法发现不同抽象层级类别之间的关系。因此,有研究者提出了跨层级的高效用项集挖掘算法。针对当前跨层级的高效用项集挖掘算法仅能处理静态数据并且无法控制挖掘层级范围的问题,提出了一种动态类别列表结构DTUL存储并维护窗口内的项集效用和类别信息。基于此结构,首次提出了基于滑动窗口的约束跨层级高效用项集挖掘算法,包括自下而上挖掘的CCLHM_DTU算法和自上而下挖掘的CCLHM_UTD算法。在含有类别信息的数据集上进行了大量实验,实验结果表明提出的算法能够有效处理数据流并灵活约束项集的层级范围。 展开更多
关键词 高效用项集挖掘 跨层级高效用项集 数据流 滑动窗口 效用列表
下载PDF
New algorithm of mining frequent closed itemsets
5
作者 张亮 任永功 付玉 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期335-338,共4页
A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory an... A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory and time consuming problems. This algorithm maps the transaction database by using a Hash table,gets the support of all frequent itemsets through operating the Hash table and forms a lexicographic subset tree including the frequent itemsets.Efficient pruning methods are used to get the FC-tree including all the minimum frequent closed itemsets through processing the lexicographic subset tree.Finally,frequent closed itemsets are generated from minimum frequent closed itemsets.The experimental results show that the mapping transaction database is introduced in the algorithm to reduce time consumption and to improve the efficiency of the program.Furthermore,the effective pruning strategy restrains the number of candidates,which saves space.The results show that the algorithm is effective. 展开更多
关键词 frequent itemsets frequent closed itemsets minimum frequent closed itemsets maximal frequent closed itemsets frequent closed pattern tree
下载PDF
HHUIM:一种新的启发式高效用项集挖掘方法
6
作者 高智慧 韩萌 +2 位作者 李昂 刘淑娟 穆栋梁 《计算机应用研究》 CSCD 北大核心 2024年第1期94-101,共8页
针对基于启发式的高效用项集挖掘算法在挖掘过程中可能丢失大量项集的问题,提出一种新的启发式高效用项集挖掘算法HHUIM。HHUIM利用哈里斯鹰优化算法进行种群更新,能够有效减少项集丢失。提出并设计了鹰的替换策略,解决了搜索空间较大... 针对基于启发式的高效用项集挖掘算法在挖掘过程中可能丢失大量项集的问题,提出一种新的启发式高效用项集挖掘算法HHUIM。HHUIM利用哈里斯鹰优化算法进行种群更新,能够有效减少项集丢失。提出并设计了鹰的替换策略,解决了搜索空间较大的问题,降低了适应度函数值低于最小效用阈值的鹰的数量。此外,提出存储回溯策略,可有效防止算法因收敛过快陷入局部最优。大量的实验表明,所提算法优于目前最先进的启发式高效用项集挖掘算法。 展开更多
关键词 哈里斯鹰优化算法 高效用项集挖掘 启发式算法 智能优化算法
下载PDF
高效的一次性弱间隙序列模式挖掘算法
7
作者 杨鸿茜 武优西 +2 位作者 耿萌 刘靖宇 李艳 《计算机工程》 CAS CSCD 北大核心 2024年第3期60-67,共8页
间隙约束序列模式挖掘作为序列模式挖掘的一个重要分支,可以发现模式在序列中的重复出现。然而,当前研究主要针对单项序列进行挖掘,并且序列中每一项都被认为具有相同意义。为解决该问题,提出一次性弱间隙序列模式挖掘(OWP)算法,该算法... 间隙约束序列模式挖掘作为序列模式挖掘的一个重要分支,可以发现模式在序列中的重复出现。然而,当前研究主要针对单项序列进行挖掘,并且序列中每一项都被认为具有相同意义。为解决该问题,提出一次性弱间隙序列模式挖掘(OWP)算法,该算法由准备阶段、支持度计算和候选模式生成3个步骤组成。在准备阶段,建立倒排索引,并对不频繁的项进行剪枝;在支持度计算方面,利用倒排索引结构记录出现位置,避免对原始数据集的重复扫描;在候选模式生成方面,采用模式连接策略,减少冗余候选模式的生成。在项集序列和单项序列共6个真实数据集上的实验结果表明,OWP算法相比OWP-p、Ows-OWP和OWP-e算法在运行时间上分别提升了2.653、1.348、3.592倍,在内存消耗上分别减少了3.51%、0.07%、5%,说明OWP算法可以更高效地挖掘出用户感兴趣的模式。此外,OWP算法在以D1数据集为基础的6倍大小的数据集上的运行时间比D1数据集增长了3.763倍,内存消耗增长了2.310倍,运行时间和内存消耗的增加倍数均小于数据集大小的增加倍数,说明OWP算法具有良好的可扩展性。 展开更多
关键词 序列模式挖掘 项集挖掘 间隙约束 一次性条件 弱间隙约束
下载PDF
基于Flag-Prefix-Tree的频繁模式挖掘改进算法
8
作者 蒋跃军 郑文 《浙江万里学院学报》 2024年第3期76-81,共6页
稀疏数据集上,条件FP-Tree无法有效压缩且频繁构造开销大,使用伪构造的问题是数据项目未经压缩和过滤导致额外的遍历代价。文章提出了一种简单而新颖的标志前缀树(Flag-Prefix-Tree)和一种新的挖掘稀疏数据集上频繁模式的算法FPT-Mine... 稀疏数据集上,条件FP-Tree无法有效压缩且频繁构造开销大,使用伪构造的问题是数据项目未经压缩和过滤导致额外的遍历代价。文章提出了一种简单而新颖的标志前缀树(Flag-Prefix-Tree)和一种新的挖掘稀疏数据集上频繁模式的算法FPT-Mine。通过Flag-Prefix-Tree中的flag,伪构造条件树可以巧妙地过滤不频繁项目。而且flag可以在挖掘过程中递归地重用,只有非常小的开销,但节省了遍历不频繁项目的大量开销。FPT-Mine以自上向下的顺序遍历Flag-Prefix-Tree,并为每个频繁模式创建一个临时根表(Root table)来伪构造条件树,这样就不需要在每个节点上维护父节点和兄弟节点的链接。此外,FPT-Mine在树上应用了合并技术,这使得FlagPrefix-Tree越来越小。研究表明,FPT-Mine在各种稀疏数据集中具有高性能和可扩展性。FPT-Mine在所有测试数据集中的性能都优于FP-growth,当最小支持度阈值降低时,算法之间的差距增大。 展开更多
关键词 数据挖掘 关联规则 频繁模式 频繁项目集
下载PDF
频繁项集挖掘研究前沿及展望
9
作者 张晴 谭旭 吕欣 《深圳信息职业技术学院学报》 2024年第1期1-14,共14页
频繁项集挖掘是数据挖掘领域的核心任务之一,其目标是发现在数据库中频繁出现的模式。这些模式对于关联规则、分类、异常检测等多个数据挖掘任务都具有重要作用。由于随着项集大小的增加,项集的组合数量呈指数级增长,导致计算复杂性急... 频繁项集挖掘是数据挖掘领域的核心任务之一,其目标是发现在数据库中频繁出现的模式。这些模式对于关联规则、分类、异常检测等多个数据挖掘任务都具有重要作用。由于随着项集大小的增加,项集的组合数量呈指数级增长,导致计算复杂性急剧上升,研究人员一直在努力开发高效的算法来解决这一问题。面向频繁项集挖掘的算法、紧凑表示和前沿应用,深入探讨不同技术的的工作原理、优势和局限性,从而对这一领域的研究现状进行全面总结。最后,进一步探讨了该领域的前沿发展趋势,指出计算效率、基于约束的频繁项集挖掘、模式的可解释性以及算法在不同领域的创新应用等未来潜在研究方向。 展开更多
关键词 频繁项集 数据挖掘 模式增长 关联规则
下载PDF
A Quarterly High RFM Mining Algorithm for Big Data Management
10
作者 Cuiwei Peng Jiahui Chen +1 位作者 Shicheng Wan Guotao Xu 《Computers, Materials & Continua》 SCIE EI 2024年第9期4341-4360,共20页
In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf ava... In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability. 展开更多
关键词 Data mining recency pattern high-utility itemset RFM pattern mining on-shelf management
下载PDF
中医药辨治糖尿病心脏病用药规律分析
11
作者 陈丽霞 郭苗苗 +4 位作者 李儒婷 彭剑飞 张惠玲 王靓 施慧 《陕西中医药大学学报》 2024年第3期74-81,共8页
目的基于现代文献探究糖尿病心脏病的用药规律。方法检索中国知网(CNKI)、中国生物医学文献数据库(CBM)等数据库建库至2021年12月收录的有关中药辨治糖尿病心脏病的文献。分别使用Lantern 5.0、Weka 3.8.5软件,对药物及症状进行隐结构... 目的基于现代文献探究糖尿病心脏病的用药规律。方法检索中国知网(CNKI)、中国生物医学文献数据库(CBM)等数据库建库至2021年12月收录的有关中药辨治糖尿病心脏病的文献。分别使用Lantern 5.0、Weka 3.8.5软件,对药物及症状进行隐结构分析以及药物与药物、药物与证型、药物与症状的频繁项集分析。结果共计文献131篇。数据挖掘分析常用症状51项,包括苔白、面色少华、头晕等;药物使用145味,包括丹参、麦冬、黄芪等;药物功效有补虚、活血化瘀、清热等。药物隐结构模型得到包括补益肝肾、涩精固脱等4类隐类;症状隐结构模型得到气虚、阴虚、阳虚、痰湿等证素。挖掘出药物-药物频繁项集12项,包括川芎+麦冬+丹参等;药物-证型频繁项集17项,其中包括肉桂+五味子+阴阳两虚等;药物-症状频繁项集12项,包括瓜蒌+大便溏+苔白等。结论中药辨治糖尿病心脏病以调补心肾、健脾益气为主,并根据具体证型予以用药,可为临床干预糖尿病心脏病提供参考依据。 展开更多
关键词 糖尿病 心脏病 数据挖掘 隐结构 频繁项集 用药规律
下载PDF
混合属性网络多维多层关联数据智能挖掘算法
12
作者 段雪莹 《智能计算机与应用》 2024年第3期207-211,共5页
针对传统关联数据挖掘算法,强项集挖掘后产生大量候选项集,导致挖掘耗时长、挖掘精度低等问题,提出一种混合属性网络多维多层关联数据智能挖掘算法(Multidimensional Multilayer Associative Data Intelligent Mining Algorithm,MMAD-IM... 针对传统关联数据挖掘算法,强项集挖掘后产生大量候选项集,导致挖掘耗时长、挖掘精度低等问题,提出一种混合属性网络多维多层关联数据智能挖掘算法(Multidimensional Multilayer Associative Data Intelligent Mining Algorithm,MMAD-IM)。计算混合属性网络中随机数据到簇中心的距离,将目标数据分配到距离簇中心最近的簇中,使簇中心固定,完成混合属性网络数据的聚类分析。从聚类完成的数据中提取出有效的基本频繁向量,同时计算数据的候选项集,对哈希表进行扫描,利用改进Apriori算法完成强项集挖掘。以此为基础构建空间关系,获取近似区域与近似点之间的距离,形成待挖掘数据并计算数据的隶属度数值,完成智能挖掘。实验结果表明,所提算法具有较好的数据聚类效果,强项集挖掘后剩余的候选项集数量较少,整体数据挖掘耗时远低于传统算法,挖掘精度高达90%。 展开更多
关键词 多维多层关联数据 聚类 基本频繁向量 强项集 挖掘
下载PDF
基于统计显著性检验的高效用项集挖掘算法
13
作者 吴军 魏丹丹 +1 位作者 欧阳艾嘉 王亚 《计算机应用研究》 CSCD 北大核心 2024年第10期2970-2977,共8页
针对传统高效用项集挖掘算法在具有不同类型标签事务中报告假阳性高效用项集的问题,提出两个基于统计显著性检验的高效用项集挖掘算法——FHUI和PHUI算法。这两个算法首先找到所有待检验高效用项集并依据项集长度进行分组;然后,FHUI算... 针对传统高效用项集挖掘算法在具有不同类型标签事务中报告假阳性高效用项集的问题,提出两个基于统计显著性检验的高效用项集挖掘算法——FHUI和PHUI算法。这两个算法首先找到所有待检验高效用项集并依据项集长度进行分组;然后,FHUI算法根据项集自身的频率分布生成零分布,PHUI算法根据事务内置换策略或事务间置换策略构造置换事务集合来生成零分布。最后,FHUI和PHUI算法从零分布中计算出p值并运用错误发现率剔除假阳性高效用项集。基准事务集合实验结果显示FHUI和PHUI算法能够剔除大量的假阳性高效用项集,在后续分类任务中取得了更高的正确率;仿真事务集合实验结果显示FHUI和PHUI算法报告的项集中假阳性高效用项集数量占比低于4.8%且平均效用高于39000。实验结果证明,在具有不同类型的标签事务中,FHUI和PHUI算法报告的统计显著高效用项集可靠性和实用性更强。 展开更多
关键词 数据挖掘 高效用项集挖掘 统计显著性检验 Fisher检验 置换检验
下载PDF
基于并行式频繁项集的党政收费平台
14
作者 郭振华 孙艳青 王中兴 《电子设计工程》 2024年第5期31-36,共6页
为提高党政收费时效性与信息化管理水平,基于并行式频繁项集挖掘算法开发高效率、智能化的党政收费管理平台。基于云计算技术构建党政收费管理平台的总体架构,提供云缴费、党建教育学习、党建宣传等信息化功能。在Spark分布式计算框架... 为提高党政收费时效性与信息化管理水平,基于并行式频繁项集挖掘算法开发高效率、智能化的党政收费管理平台。基于云计算技术构建党政收费管理平台的总体架构,提供云缴费、党建教育学习、党建宣传等信息化功能。在Spark分布式计算框架上构建Spark集群,构造党政收费频繁项集挖掘矩阵,根据矩阵行列间运算获得频繁k项集支持度,利用“主-从”节点模式实现并行式频繁项集挖掘,获得党政收费管理信息分类结果。测试结果显示,该平台各功能最大平均响应时长仅为1.51 s,挖掘党政收费信息频繁项集的时间开销短、推荐非空率高,呈现了良好的频繁项集挖掘效率与质量。该平台助力优化党政费用交纳工作模式,为党员管理的信息化、智能化提供支持。 展开更多
关键词 并行式 云计算 频繁项集 Spark平台 挖掘 党政收费
下载PDF
改进关联规则算法在自然资源云中的应用研究
15
作者 李佳临 邬阳 +3 位作者 魏奇 赵雯雯 李芳芳 陈卉 《时空信息学报》 2024年第1期140-147,共8页
针对自然资源信息管理分散、网络安全防御能力弱,以及难以追踪溯源威胁攻击行为等问题,本研究在自然资源云中建立了一套安全防护体系,用以整合网络安全资源,强化网络安全态势感知能力,做到攻击敏捷预测、快速回溯。安全防护体系工作效... 针对自然资源信息管理分散、网络安全防御能力弱,以及难以追踪溯源威胁攻击行为等问题,本研究在自然资源云中建立了一套安全防护体系,用以整合网络安全资源,强化网络安全态势感知能力,做到攻击敏捷预测、快速回溯。安全防护体系工作效能的提升,核心在于其安全组件检测引擎模块中关联规则算法的改进。首先,在数据采集阶段,通过预处理将威胁告警数据转换为可供机器处理的标准数据格式;其次,在矩阵计算阶段,使用Map Reduce分布式计算框架提升频繁项集的处理效率;最后,以Apriori算法为蓝本,通过单次扫描锁定频繁k项集范围、矩阵向量内积运算、减少冗余候选项集生成三项措施进行算法改进。实验仿真表明:在处理同样容量网络安全多源数据集合,并在相同维度的关联规则矩阵下,本算法处理效率较经典Apriori算法提升3倍以上;随着输入数据集合瞬时容量的逐渐扩增,本算法的时间复杂度稳定,并为增量挖掘算法的一半以下。研究成果可以实现自然资源部网络安全防护工作从传统的“被动挨打”转向“主动防御”的新局面。 展开更多
关键词 自然资源云 关联规则 MAPREDUCE 频繁项集 APRIORI 网络安全
下载PDF
基于频繁项集的三相异步电动机调压节能自寻优控制技术
16
作者 张剑涛 《微特电机》 2024年第11期51-55,共5页
三相异步电动机运行一般采用变频调速控制方法,按照负载固定模式实现调压节能控制,但其应用在多负载工况下容易使电动机运行能耗较高。为了在多负载工况下降低电机运行能耗,提出基于频繁项集的三相异步电动机调压节能自寻优控制技术。... 三相异步电动机运行一般采用变频调速控制方法,按照负载固定模式实现调压节能控制,但其应用在多负载工况下容易使电动机运行能耗较高。为了在多负载工况下降低电机运行能耗,提出基于频繁项集的三相异步电动机调压节能自寻优控制技术。利用频繁项集挖掘技术筛选海量三相异步电动机运行数据,明确电动机动态运行能耗规律。构建调压节能自寻优控制框架,以电气总损耗最小为目标设计控制参数自寻优函数。运用改进鲸鱼优化算法进行迭代优化求解,实现调压节能自寻优控制。实验结果表明:该控制技术实施后,三相异步电动机在负载变化情况下电气总损耗低于18 W,表现出较优的节能控制效果。 展开更多
关键词 三相异步电动机 频繁项集 节能 调压 控制参数 自寻优
下载PDF
基于频繁项集挖掘的异常用电行为监测系统
17
作者 李晓民 魏爽 王玉东 《电子设计工程》 2024年第22期133-136,141,共5页
由于在构建异常用电行为监测系统时,需要处理大量的异常数据,且取样参量存在相似性,增大计算量,导致监测能力较低。为提升电网主机对异常用电行为的监测能力,设计基于频繁项集挖掘的异常用电行为监测系统。根据频繁项集提取异常用电信... 由于在构建异常用电行为监测系统时,需要处理大量的异常数据,且取样参量存在相似性,增大计算量,导致监测能力较低。为提升电网主机对异常用电行为的监测能力,设计基于频繁项集挖掘的异常用电行为监测系统。根据频繁项集提取异常用电信号不确定数据集,研究异常用电的行为特征,分析异常用电行为。根据电网监测规则与异常用电信号监测模块,实现监测功能,设计异常用电行为监测系统。实验结果表明,文中方法可以精准监测到第5 s时电路负荷发生的突增,说明该方法的监测结果可靠性较高。 展开更多
关键词 频繁项集挖掘 异常用电行为 不确定数据集 用电规律 监测规则 耗电量
下载PDF
高平均模糊效用项集挖掘算法
18
作者 王斌 李晓华 +1 位作者 周伟 胡克勇 《计算机工程与设计》 北大核心 2024年第5期1398-1405,共8页
为解决高模糊效用项集挖掘算法中存在的挖掘结果中含有大量无效的长项集以及搜索空间过大的问题,提出一种高平均模糊效用项集挖掘算法HAFUIM(high average fuzzy utility itemset mining algorithm)。定义平均模糊效用,考虑项集的模糊... 为解决高模糊效用项集挖掘算法中存在的挖掘结果中含有大量无效的长项集以及搜索空间过大的问题,提出一种高平均模糊效用项集挖掘算法HAFUIM(high average fuzzy utility itemset mining algorithm)。定义平均模糊效用,考虑项集的模糊效用和长度的关系,解决倾向于挖掘长项集的问题;提出平均模糊上限模型和4种剪枝性质,缩小搜索空间;设计平均模糊列表结构用于存储必要的效用信息,减少数据库扫描次数。通过仿真实验验证了所提算法的可行性和高效性。 展开更多
关键词 数据挖掘 项集挖掘 高模糊效用 平均模糊效用 平均模糊上限模型 平均模糊列表 剪枝策略
下载PDF
电炉企业异构网络共享数据跨级高效项集挖掘系统
19
作者 孙丽君 《工业加热》 CAS 2024年第3期55-58,78,共5页
由于电炉企业数据存在多级结构,且数据量庞大,为解决因数据库中事务长度过大导致的数据项挖掘深度较差的问题,从而提升数据的跨级传输和项集挖掘能力,设计电炉企业异构网络共享数据跨级高效项集挖掘系统。在电炉企业异构网络体系中,根... 由于电炉企业数据存在多级结构,且数据量庞大,为解决因数据库中事务长度过大导致的数据项挖掘深度较差的问题,从而提升数据的跨级传输和项集挖掘能力,设计电炉企业异构网络共享数据跨级高效项集挖掘系统。在电炉企业异构网络体系中,根据MP共享节点定义标准,完善AP数据分片原则,再利用获取到的共享数据样本,确定高效项集的RCAUL调用方案,实现对数据样本的挖掘需求分析,完成电炉企业异构网络共享数据跨级高效项集挖掘系统的设计。实验结果表明,应用所设计系统可将事务长度控制在0~512 kB,能够有效增强电炉企业网络共享数据跨级传输能力。 展开更多
关键词 电炉企业异构网络 共享数据 跨级传输 高效项集 逻辑分析 MP节点 AP分片 RCAUL调用
下载PDF
基于PrefixSpan和LightGBM的网元拓扑连接关系判别方法
20
作者 倪晋宇 涂泾伦 +2 位作者 杨天昊 陈晓峰 白云飞 《数字通信世界》 2024年第1期41-44,89,共5页
文章创新地提出了一种基于PrefixSpan和LightGBM的网元拓扑连接关系判别的方法,采用PrefixSpan算法对告警数据进行抽取挖掘,然后将挖掘结果进行分析并将分析结果输入到LightGBM中进行监督学习,获得最终网元拓扑连接关系判定模型。实验... 文章创新地提出了一种基于PrefixSpan和LightGBM的网元拓扑连接关系判别的方法,采用PrefixSpan算法对告警数据进行抽取挖掘,然后将挖掘结果进行分析并将分析结果输入到LightGBM中进行监督学习,获得最终网元拓扑连接关系判定模型。实验结果表明:本方法在基站及相关网元拓扑连接关系的推断中f1值达到了0.89,有效提升了网元拓扑连接关系判别的准确度,为网元拓扑连接关系校正提供了有力手段,为数字孪生网络构建打下坚实的基础。 展开更多
关键词 数字孪生网络 频繁项集 时序 网元拓扑连接 机器学习
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部