After a thorough review of some controllable parameters,which included field investigations,cavern dimensions,explosive,rock strength etc.,cut,contour,lifters and stoping holes were introduced for blasting cavern of n...After a thorough review of some controllable parameters,which included field investigations,cavern dimensions,explosive,rock strength etc.,cut,contour,lifters and stoping holes were introduced for blasting cavern of nucleus submarine.These design were conducted using a U.Langefors and B.Kihlstrom theory.展开更多
This research examines optimization of blasting parameters for economic production of granite aggregates in Ratcon and NSCE quarries located atIbadan,OyoState. Samples were collected from the study areas for the deter...This research examines optimization of blasting parameters for economic production of granite aggregates in Ratcon and NSCE quarries located atIbadan,OyoState. Samples were collected from the study areas for the determination of rock density and porosity. Schmidt hammer was used for in situ determination of rock hardness. Uniaxial compressive strength of in situ rock was estimated from the values obtained from Schmidt hammer rebound hardness test and density determined from laboratory test. Blasting data were collected from the study areas for optimization. Multiple regression analysis using computer aided solution SPSS (Statistical Package for the Social Sciences) was used to analyse data obtained from the laboratory test, field test and the study areas. The estimated mean uniaxial compressive strength value of NSCE is 240 MPa and that of Ratcon is 200 MPa and their average densities and average porosities are2.63g/cm3,2.55g/cm3, 1.88% and 2.25% respectively. Eleven parameters were input into the multiple regression analysis to generate the models. Two parameters out of eleven input parameters such as geometric volume of blast (Y1) and number of boulders generated after blasting (Y2) were dependent variables and the remaining nine such as X1 (Drill hole diameter), X2 (Drill hole depth), X3 (Spacing), X4 (Burden), X5 (Average charge per hole), X6 (Rock density), X7 (Porosity), X8 (Uniaxial compressive strength) and X9 (Specific charge) were input as independent variables. The results of the models show that out of the nine independent variables seven of them that is X1 (Borehole diameter), X2 (Borehole depth), X3 (Spacing), X4 (Burden), X5 (Average charge per hole), X8 (Uniaxial compressive strength) and X9 (Specific charge) have significant contribution to the models while X6 (Rock Density) and X7 (Porosity) have insignificant contribution they are therefore automatically deleted by the SPSS. The result of the models developed for the optimization reveals that blasting number 5 gives the required product at lowest possible cost. From the result, the cost of secondary blasting has been reduced and volume of the blasted rock has been increased with low cost of explosives, the parameters that give this result have been chosen as optimum parameters.展开更多
Numerical simulation of the process of rock fragmentation by blasting with different kinds of explosives is carried out by using the damage model of rock fragmentation and a finite difference program "SHALE"...Numerical simulation of the process of rock fragmentation by blasting with different kinds of explosives is carried out by using the damage model of rock fragmentation and a finite difference program "SHALE". The research shows that the process and pattern of rock fragmentation by blasting vary with the parameters of explosives in the same kind of rock and under the same conditions, and that the effects of stress wave and the detonated gas change clearly. A new conception about the mechanism of blasting is dealt with,i. e. the mechanism of rock blasting fragmentation is related to the explosive parameters as well as the conditions of blasting. The mechanism and process of rock blasting fragmeutation can be influenced or changed by the changes of blasting parameters and conditions. This theory could be used to guide the practice and parameter design of engineering blasting.展开更多
The present study considers the so-called air deck blasting,one of the most commonly used techniques for the improvement of blasting efficiency in mining applications.In particular,it aims to improve the operating con...The present study considers the so-called air deck blasting,one of the most commonly used techniques for the improvement of blasting efficiency in mining applications.In particular,it aims to improve the operating conditions of large-scale equipment,increase the efficiency of the slope enlarging process,and reduce the mining cost.These objectives are implemented through a two-fold approach where,first,a program for slope enlarging based on the middle air-deck charge blasting-loosening technology is proposed,and second,the physical mechanism responsible for the stress wave attenuation in the rock is analyzed in the framework of a Holmquist–Johnson–Cook constitutive model.Field test results verify that the proposed approach is highly efficient and economical when used in medium-hard rock blasting and thus provides a basis for the practical implementation of slope enlargement for high benches in Open-Pit Mines.展开更多
In order to reduce the influence of outliers on the parameter estimate of the attenuation formula for the blasting vibration velocity,a fuzzy nonlinear regression method of Sadov’s vibration formula was proposed on t...In order to reduce the influence of outliers on the parameter estimate of the attenuation formula for the blasting vibration velocity,a fuzzy nonlinear regression method of Sadov’s vibration formula was proposed on the basis of the fuzziness of blasting engineering,and the algorithm was described in details as well.In accordance with an engineering case,the vibration attenuation formula was regressed by the fuzzy nonlinear regression method and the nonlinear least square method,respectively.The calculation results showed that the fuzzy nonlinear regression method is more suitable to the field test data.It differs from the nonlinear least square method because the weight of residual square in the objective function can be adjusted according to the membership of each data.And the deviation calculation of least square estimate of parameters in the nonlinear regression model verified the rationality of using the membership to assign the weight of residual square.The fuzzy nonlinear regression method provides a calculation basis for estimating Sadov’s vibration formula’s parameters more accurately.展开更多
Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of sh...Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of short-time non-stationary random signals, the wavelet packet energy spectrum analysis for blast vibration signal has made by wavelet packet analysis technology and the signals were measured under different explosion parameters (the maximal section dose, the distance of blast source to measuring point and the section number of millisecond detonator). The results show that more than 95% frequency band energy of the signals sl-s8 concentrates at 0-200 Hz and the main vibration frequency bands of the signals sl-s8 are 70.313-125, 46.875-93.75, 15.625-93.75, 0-62.5, 42.969-125, 15.625-82.031, 7.813-62.5 and 0-62.5 Hz. Energy distributions for different frequency bands of blast vibration signal are obtained and the characteristics of energy distributions for blast vibration signal measured under different explosion parameters are analyzed. From blast vibration signal energy, the decreasing law of blast seismic waves measured under different explosion parameters was studied and the wavelet packet analysis is an effective means for studying seismic effect induced by blast.展开更多
In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal ...In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.展开更多
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas...In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.展开更多
A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacycl...A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacyclohexane)passivated with wax.Experimentally determined calorimetric measurements of the heat of detonation,along with the overpressure histories in an explosion chamber filled with nitrogen,were used to determine the quasi-static pressure(QSP)under anaerobic conditions.Overpressure measurements were also performed in a semi-closed bunker,and all blast wave parameters generated after the detonation of 500 g charges of the tested explosives were determined.Detonation calorimetry results,QSP values,and blast wave parameters(pressure amplitude,specific and total impulses)clearly indicate that Be is much more effective as an additional fuel than either Al or Mg in both anaerobic post-detonation reactions as well as the subsequent aerobic combustion.The heat of detonation of the RDXwax/AP/Be explosive mixture is over 40%and 50%higher than that of the mixture containing aluminum and magnesium instead of beryllium,respectively.Moreover,the TNT equivalent of the Be-containing composition due to the overpressure in the nitrogen-filled explosion chamber is 1.66,while the equivalent calculated using an air shock wave-specific impulse at a distance of 2.5 m is equal to 1.69.The high values of these parameters confirm the high reactivity of beryllium in both the anaerobic and aerobic stages of the thermobaric explosion.展开更多
This paper presents a method by which the maximum possible rate of pulverized coal injection (PCI) in </span><span style="font-family:Verdana;">blast</span> <span style="font-family...This paper presents a method by which the maximum possible rate of pulverized coal injection (PCI) in </span><span style="font-family:Verdana;">blast</span> <span style="font-family:Verdana;">furnace</span><span style="font-family:Verdana;"> can be predicted. The method is based on a two-step approach. First, a </span><span style="font-family:Verdana;">first principle</span><span style="font-family:Verdana;"> simulation model of the blast furnace is used to generate data sets for the development of a linear model of pulverized coal injection rate. The data has been generated randomly in MATLAB software within the range of operating parameters (constraints) of the blast furnace. After </span><span style="font-family:Verdana;">that</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the coefficients of the function have been determined. The inputs and the resulting outputs formed the data on which the linear optimization model was developed. Next, the linear model was used for maximizing the pulverized coal rate injection by optimizing the other variables. Two operating Indian Blast Furnaces have been chosen to validate the optimization model.展开更多
Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for...Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for achieving an excellent smooth blasting effect.In this paper,the Riedel-Hiermaier-Thoma(RHT)model was employed to study rock mass damage under smooth blasting.Firstly,the parameters of the RHT model were calibrated by using the existing SHPB experiment,which were then verified by the existing blasting experiment results.Secondly,the influence of different charge structures on the blasting effect was investigated using the RHT model.The simulation results indicated that eccentric charge blasting has an obvious pressure eccentricity effect.Finally,to improve the blasting effect,the smooth blasting parameters were optimized based on an eccentric charge structure.The overbreak and underbreak phenomena were effectively controlled,and a good blasting effect was achieved with the optimized blasting parameters.展开更多
The outcome of the cutting blasting in a one-step shaft excavation is heavily related to the cutting parameters used for parallel cutting method. In this study, the relationships between the cutting parameters(such a...The outcome of the cutting blasting in a one-step shaft excavation is heavily related to the cutting parameters used for parallel cutting method. In this study, the relationships between the cutting parameters(such as the hole spacing L and the empty hole diameter D) and damage zones were investigated by numerical simulation. A damage state index γ was introduced and used to characterize the crushing and crack damage zones through a user-defined subroutine. Two indices, i.e., η1 and η2 that can reflect the cutting performance, were also introduced. The simulation results indicate that an optimal value of L can be obtained so that the η1 and η2 can reach their optimal states for the best cutting performance. A larger D results in better cutting performance when the L value maintains its best. In addition, the influences of the loading rate and the in-situ stress on the cutting performance were investigated. It is found that an explosive with a high loading rate is suit for cutting blasting. The propagation direction and the length of the tensile cracks are affected by the direction and the magnitude of the maximum principal stress.展开更多
On the basis of the interpretation of engineering geology of the tunnel and of its adjacent dangerous rock masses (DRM), this paper presents the energy and vibration parameters of the explosion that propagates in diff...On the basis of the interpretation of engineering geology of the tunnel and of its adjacent dangerous rock masses (DRM), this paper presents the energy and vibration parameters of the explosion that propagates in different blasting modes according to the experimental formulas now usually employed. Then the stability checking computation of T 8-T 12 area, the most dangerous area of DRM, is conducted under the limited blasting condition and with the limited equilibrium method. The result shows that the effect on the stability is only 5.5 % and that this area also contains certain safety reserves.展开更多
The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushi...The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushing in given rockmass conditions. The most effective parameters of process design could be established based on the regression models of the cumulative influence of rockmass and mine design parameters on the overall cost per tonne of the rock drilled, blasted, handled and crushed. These models could be developed from the huge data accumulated worldwide on the costs per tonne of hard rock surface mining in drilling, blasting, handling and primary crushing vs the parameters of rockmass and mine design. This paper only dwelt on the development of regression models for oversize generation, blasthole productivity and blasting cost for iron ore surface mines, whose data is available. The SPSS standard statistical correlation – regression analysis software was used in the analysis. Interpretation of the models generated shows that the individual effects of the determinant rockmass and blast design parameters on oversize generation, blasthole productivity and blasting cost are all in compliance with the findings of other researchers and the theory of explosive rock fragmentation and could be used for the estimation of oversize generation, blasthole productivity and blasting cost in rockmass and blast design conditions similar to those of the iron ore surface mines examined in this study. However, the regression models obtained here could not be used alone for the optimization of blast design because most of the determinant parameters also have conflicting effect on the other processes of drilling, handling and primary crushing the blasted rock. Also, the quality and content of the regression models could be enhanced further by increasing the content of rockmass and blast design parameters and the volume of data considered in the regression analysis.展开更多
With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important...With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important opportunity to quickly and accurately measure the geo-mechanical features of the rock mass on-site, much in advance of the downstream operations. It is well established that even the slightest variation in lithology, ground conditions, blast designs vis-a-vis geologic features and explosives performance, results in drastic changes in fragmentation results. Keeping in mind the importance of state-of-the-art measurement-while-drilling (MWD) technique, the current paper focuses on integrating this technique with the blasting operation in order to enhance the blasting designs and results. The paper presents a preliminary understanding of various blasting models, blastability and other related concepts, to review the state-of-the-art advancements and researches done in this area. In light of this, the paper highlights the future needs and implications on drill monitoring systems for improved information to enhnnrp th~ hl^tin~ r^HIt~展开更多
A surface gold mine wishes to develop a new pit (Pit A) as part of its mining schedules. The proposed pit outline is about 300 m to the closest community. Blasting operations in Pit A would potentially create undesira...A surface gold mine wishes to develop a new pit (Pit A) as part of its mining schedules. The proposed pit outline is about 300 m to the closest community. Blasting operations in Pit A would potentially create undesirable environmental impacts including fly rocks, ground vibrations and air blasts to neighbouring communities. Integration of proper planning tools or protocols for blasting at Pit A is the major concern of the Mine. Due to safety reasons, management wishes to explore the best blasting protocols that will restrain any blast impact to a 250 m buffer from the proposed pit outline. The Kuz-Ram fragmentation model was used to generate the optimal geometric parameters required for blasting at Pit A. Ground vibration, air blasts and fly rock impact prediction models were used to estimate the associated blast impacts to the neighbouring community. The predictions were made for blasting the oxides, transition and fresh rock formations to be encountered in Pit A. The predicted ground vibration and air blast levels were compared with the Ghanaian regulatory threshold of 2 mm/s. The predicted maximum fly rock distance (235 m) from the pit outline is within the established 250 m clearance buffer zone. The geometric drill and blast parameters and associated single-hole firing charges were used in the prediction models. The predicted results from this study will assist the surface gold mine to properly execute safe blasting operations with minimal impact to the neighbouring community. Due to known scattering of NONEL explosives in initiation systems, electronic initiation systems are recommended for blasting in the new pit.展开更多
Generally, the Mos hardness of bauxite is 2.5 to 3.5. According to the specific conditions of the Sangaredi bauxite deposit, that is, the rock hardness coefficient is between 3 and 6, and there is a clayey zone in the...Generally, the Mos hardness of bauxite is 2.5 to 3.5. According to the specific conditions of the Sangaredi bauxite deposit, that is, the rock hardness coefficient is between 3 and 6, and there is a clayey zone in the bauxite mining area, it is necessary to carry out blasting work before mining. This article mainly analyzes and optimizes the blasting practice of the Sangaredi open pit bauxite mine. The subject was finally extended to the reduction of nuisances due to blasting, that is to say essentially due to vibrations: this presupposed a study around the vibration data available, and the proposal of methods to limit these vibrations. The bottom conditions of the Sangaredi bauxite ore zone are studied. Bauxite reserves are very rich and the market is huge. The analysis of mine blasting practices, mainly the types of explosives, the selection and analysis of explosives and blasting equipment and choosing the mode of longitudinal blasting, the link of the blasting site of the mining area, further study the optimization of mining blasting practice, the choice of drilling and process to determine reasonable blasting parameters, which improving the drilling method. The experimental results show that this optimization scheme improves efficiency blasting of the bauxite mine but also promotes an increase in production.展开更多
文摘After a thorough review of some controllable parameters,which included field investigations,cavern dimensions,explosive,rock strength etc.,cut,contour,lifters and stoping holes were introduced for blasting cavern of nucleus submarine.These design were conducted using a U.Langefors and B.Kihlstrom theory.
文摘This research examines optimization of blasting parameters for economic production of granite aggregates in Ratcon and NSCE quarries located atIbadan,OyoState. Samples were collected from the study areas for the determination of rock density and porosity. Schmidt hammer was used for in situ determination of rock hardness. Uniaxial compressive strength of in situ rock was estimated from the values obtained from Schmidt hammer rebound hardness test and density determined from laboratory test. Blasting data were collected from the study areas for optimization. Multiple regression analysis using computer aided solution SPSS (Statistical Package for the Social Sciences) was used to analyse data obtained from the laboratory test, field test and the study areas. The estimated mean uniaxial compressive strength value of NSCE is 240 MPa and that of Ratcon is 200 MPa and their average densities and average porosities are2.63g/cm3,2.55g/cm3, 1.88% and 2.25% respectively. Eleven parameters were input into the multiple regression analysis to generate the models. Two parameters out of eleven input parameters such as geometric volume of blast (Y1) and number of boulders generated after blasting (Y2) were dependent variables and the remaining nine such as X1 (Drill hole diameter), X2 (Drill hole depth), X3 (Spacing), X4 (Burden), X5 (Average charge per hole), X6 (Rock density), X7 (Porosity), X8 (Uniaxial compressive strength) and X9 (Specific charge) were input as independent variables. The results of the models show that out of the nine independent variables seven of them that is X1 (Borehole diameter), X2 (Borehole depth), X3 (Spacing), X4 (Burden), X5 (Average charge per hole), X8 (Uniaxial compressive strength) and X9 (Specific charge) have significant contribution to the models while X6 (Rock Density) and X7 (Porosity) have insignificant contribution they are therefore automatically deleted by the SPSS. The result of the models developed for the optimization reveals that blasting number 5 gives the required product at lowest possible cost. From the result, the cost of secondary blasting has been reduced and volume of the blasted rock has been increased with low cost of explosives, the parameters that give this result have been chosen as optimum parameters.
文摘Numerical simulation of the process of rock fragmentation by blasting with different kinds of explosives is carried out by using the damage model of rock fragmentation and a finite difference program "SHALE". The research shows that the process and pattern of rock fragmentation by blasting vary with the parameters of explosives in the same kind of rock and under the same conditions, and that the effects of stress wave and the detonated gas change clearly. A new conception about the mechanism of blasting is dealt with,i. e. the mechanism of rock blasting fragmentation is related to the explosive parameters as well as the conditions of blasting. The mechanism and process of rock blasting fragmeutation can be influenced or changed by the changes of blasting parameters and conditions. This theory could be used to guide the practice and parameter design of engineering blasting.
文摘The present study considers the so-called air deck blasting,one of the most commonly used techniques for the improvement of blasting efficiency in mining applications.In particular,it aims to improve the operating conditions of large-scale equipment,increase the efficiency of the slope enlarging process,and reduce the mining cost.These objectives are implemented through a two-fold approach where,first,a program for slope enlarging based on the middle air-deck charge blasting-loosening technology is proposed,and second,the physical mechanism responsible for the stress wave attenuation in the rock is analyzed in the framework of a Holmquist–Johnson–Cook constitutive model.Field test results verify that the proposed approach is highly efficient and economical when used in medium-hard rock blasting and thus provides a basis for the practical implementation of slope enlargement for high benches in Open-Pit Mines.
基金Supported by the National Natural Science Foundation of China(10272109)。
文摘In order to reduce the influence of outliers on the parameter estimate of the attenuation formula for the blasting vibration velocity,a fuzzy nonlinear regression method of Sadov’s vibration formula was proposed on the basis of the fuzziness of blasting engineering,and the algorithm was described in details as well.In accordance with an engineering case,the vibration attenuation formula was regressed by the fuzzy nonlinear regression method and the nonlinear least square method,respectively.The calculation results showed that the fuzzy nonlinear regression method is more suitable to the field test data.It differs from the nonlinear least square method because the weight of residual square in the objective function can be adjusted according to the membership of each data.And the deviation calculation of least square estimate of parameters in the nonlinear regression model verified the rationality of using the membership to assign the weight of residual square.The fuzzy nonlinear regression method provides a calculation basis for estimating Sadov’s vibration formula’s parameters more accurately.
基金Foundation item: Project(51064009) supported by the National Natural Science Foundation of ChinaProject(201104356) supported by the China Postdoctoral Science FoundationProject(20114BAB206030) supported by the Natural Science Foundation of Jiangxi Province,China
文摘Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of short-time non-stationary random signals, the wavelet packet energy spectrum analysis for blast vibration signal has made by wavelet packet analysis technology and the signals were measured under different explosion parameters (the maximal section dose, the distance of blast source to measuring point and the section number of millisecond detonator). The results show that more than 95% frequency band energy of the signals sl-s8 concentrates at 0-200 Hz and the main vibration frequency bands of the signals sl-s8 are 70.313-125, 46.875-93.75, 15.625-93.75, 0-62.5, 42.969-125, 15.625-82.031, 7.813-62.5 and 0-62.5 Hz. Energy distributions for different frequency bands of blast vibration signal are obtained and the characteristics of energy distributions for blast vibration signal measured under different explosion parameters are analyzed. From blast vibration signal energy, the decreasing law of blast seismic waves measured under different explosion parameters was studied and the wavelet packet analysis is an effective means for studying seismic effect induced by blast.
基金Supported by Project from National Natural Science Foundation of China(50674111)the National key Technology R&D Program in 10th Five Years Plan of China
文摘In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.
基金financially supported by the National Natural Science Fund of China(Nos.51004003 and 51474009)Anhui Province Education Department Natural Science Fund Key Project of China(No.KJ2010A091)
文摘In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.
基金financed by the Military University of Technology under research project UGB 2024the Ludwig-Maximilian University of Munich (LMU)。
文摘A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacyclohexane)passivated with wax.Experimentally determined calorimetric measurements of the heat of detonation,along with the overpressure histories in an explosion chamber filled with nitrogen,were used to determine the quasi-static pressure(QSP)under anaerobic conditions.Overpressure measurements were also performed in a semi-closed bunker,and all blast wave parameters generated after the detonation of 500 g charges of the tested explosives were determined.Detonation calorimetry results,QSP values,and blast wave parameters(pressure amplitude,specific and total impulses)clearly indicate that Be is much more effective as an additional fuel than either Al or Mg in both anaerobic post-detonation reactions as well as the subsequent aerobic combustion.The heat of detonation of the RDXwax/AP/Be explosive mixture is over 40%and 50%higher than that of the mixture containing aluminum and magnesium instead of beryllium,respectively.Moreover,the TNT equivalent of the Be-containing composition due to the overpressure in the nitrogen-filled explosion chamber is 1.66,while the equivalent calculated using an air shock wave-specific impulse at a distance of 2.5 m is equal to 1.69.The high values of these parameters confirm the high reactivity of beryllium in both the anaerobic and aerobic stages of the thermobaric explosion.
文摘This paper presents a method by which the maximum possible rate of pulverized coal injection (PCI) in </span><span style="font-family:Verdana;">blast</span> <span style="font-family:Verdana;">furnace</span><span style="font-family:Verdana;"> can be predicted. The method is based on a two-step approach. First, a </span><span style="font-family:Verdana;">first principle</span><span style="font-family:Verdana;"> simulation model of the blast furnace is used to generate data sets for the development of a linear model of pulverized coal injection rate. The data has been generated randomly in MATLAB software within the range of operating parameters (constraints) of the blast furnace. After </span><span style="font-family:Verdana;">that</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the coefficients of the function have been determined. The inputs and the resulting outputs formed the data on which the linear optimization model was developed. Next, the linear model was used for maximizing the pulverized coal rate injection by optimizing the other variables. Two operating Indian Blast Furnaces have been chosen to validate the optimization model.
基金Projects(11802058,52074262)supported by the National Natural Science Foundation of ChinaProjects(BK20170670,BK20180651)supported by the Jiangsu Youth Foundation,China+2 种基金Project(2020QN06)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(SKLGDUEK1803)supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,ChinaProject supported by the Mass Entrepreneurship and Innovation Project of Jiangsu,China。
文摘Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for achieving an excellent smooth blasting effect.In this paper,the Riedel-Hiermaier-Thoma(RHT)model was employed to study rock mass damage under smooth blasting.Firstly,the parameters of the RHT model were calibrated by using the existing SHPB experiment,which were then verified by the existing blasting experiment results.Secondly,the influence of different charge structures on the blasting effect was investigated using the RHT model.The simulation results indicated that eccentric charge blasting has an obvious pressure eccentricity effect.Finally,to improve the blasting effect,the smooth blasting parameters were optimized based on an eccentric charge structure.The overbreak and underbreak phenomena were effectively controlled,and a good blasting effect was achieved with the optimized blasting parameters.
基金Projects(2016YFC0600706,2016YFC0600802) supported by the National Key Research and Development Program of ChinaProject(2017zzts186) supported by Cultivating Excellent Doctors of Central South University,China
文摘The outcome of the cutting blasting in a one-step shaft excavation is heavily related to the cutting parameters used for parallel cutting method. In this study, the relationships between the cutting parameters(such as the hole spacing L and the empty hole diameter D) and damage zones were investigated by numerical simulation. A damage state index γ was introduced and used to characterize the crushing and crack damage zones through a user-defined subroutine. Two indices, i.e., η1 and η2 that can reflect the cutting performance, were also introduced. The simulation results indicate that an optimal value of L can be obtained so that the η1 and η2 can reach their optimal states for the best cutting performance. A larger D results in better cutting performance when the L value maintains its best. In addition, the influences of the loading rate and the in-situ stress on the cutting performance were investigated. It is found that an explosive with a high loading rate is suit for cutting blasting. The propagation direction and the length of the tensile cracks are affected by the direction and the magnitude of the maximum principal stress.
文摘On the basis of the interpretation of engineering geology of the tunnel and of its adjacent dangerous rock masses (DRM), this paper presents the energy and vibration parameters of the explosion that propagates in different blasting modes according to the experimental formulas now usually employed. Then the stability checking computation of T 8-T 12 area, the most dangerous area of DRM, is conducted under the limited blasting condition and with the limited equilibrium method. The result shows that the effect on the stability is only 5.5 % and that this area also contains certain safety reserves.
文摘The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushing in given rockmass conditions. The most effective parameters of process design could be established based on the regression models of the cumulative influence of rockmass and mine design parameters on the overall cost per tonne of the rock drilled, blasted, handled and crushed. These models could be developed from the huge data accumulated worldwide on the costs per tonne of hard rock surface mining in drilling, blasting, handling and primary crushing vs the parameters of rockmass and mine design. This paper only dwelt on the development of regression models for oversize generation, blasthole productivity and blasting cost for iron ore surface mines, whose data is available. The SPSS standard statistical correlation – regression analysis software was used in the analysis. Interpretation of the models generated shows that the individual effects of the determinant rockmass and blast design parameters on oversize generation, blasthole productivity and blasting cost are all in compliance with the findings of other researchers and the theory of explosive rock fragmentation and could be used for the estimation of oversize generation, blasthole productivity and blasting cost in rockmass and blast design conditions similar to those of the iron ore surface mines examined in this study. However, the regression models obtained here could not be used alone for the optimization of blast design because most of the determinant parameters also have conflicting effect on the other processes of drilling, handling and primary crushing the blasted rock. Also, the quality and content of the regression models could be enhanced further by increasing the content of rockmass and blast design parameters and the volume of data considered in the regression analysis.
文摘With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important opportunity to quickly and accurately measure the geo-mechanical features of the rock mass on-site, much in advance of the downstream operations. It is well established that even the slightest variation in lithology, ground conditions, blast designs vis-a-vis geologic features and explosives performance, results in drastic changes in fragmentation results. Keeping in mind the importance of state-of-the-art measurement-while-drilling (MWD) technique, the current paper focuses on integrating this technique with the blasting operation in order to enhance the blasting designs and results. The paper presents a preliminary understanding of various blasting models, blastability and other related concepts, to review the state-of-the-art advancements and researches done in this area. In light of this, the paper highlights the future needs and implications on drill monitoring systems for improved information to enhnnrp th~ hl^tin~ r^HIt~
文摘A surface gold mine wishes to develop a new pit (Pit A) as part of its mining schedules. The proposed pit outline is about 300 m to the closest community. Blasting operations in Pit A would potentially create undesirable environmental impacts including fly rocks, ground vibrations and air blasts to neighbouring communities. Integration of proper planning tools or protocols for blasting at Pit A is the major concern of the Mine. Due to safety reasons, management wishes to explore the best blasting protocols that will restrain any blast impact to a 250 m buffer from the proposed pit outline. The Kuz-Ram fragmentation model was used to generate the optimal geometric parameters required for blasting at Pit A. Ground vibration, air blasts and fly rock impact prediction models were used to estimate the associated blast impacts to the neighbouring community. The predictions were made for blasting the oxides, transition and fresh rock formations to be encountered in Pit A. The predicted ground vibration and air blast levels were compared with the Ghanaian regulatory threshold of 2 mm/s. The predicted maximum fly rock distance (235 m) from the pit outline is within the established 250 m clearance buffer zone. The geometric drill and blast parameters and associated single-hole firing charges were used in the prediction models. The predicted results from this study will assist the surface gold mine to properly execute safe blasting operations with minimal impact to the neighbouring community. Due to known scattering of NONEL explosives in initiation systems, electronic initiation systems are recommended for blasting in the new pit.
文摘Generally, the Mos hardness of bauxite is 2.5 to 3.5. According to the specific conditions of the Sangaredi bauxite deposit, that is, the rock hardness coefficient is between 3 and 6, and there is a clayey zone in the bauxite mining area, it is necessary to carry out blasting work before mining. This article mainly analyzes and optimizes the blasting practice of the Sangaredi open pit bauxite mine. The subject was finally extended to the reduction of nuisances due to blasting, that is to say essentially due to vibrations: this presupposed a study around the vibration data available, and the proposal of methods to limit these vibrations. The bottom conditions of the Sangaredi bauxite ore zone are studied. Bauxite reserves are very rich and the market is huge. The analysis of mine blasting practices, mainly the types of explosives, the selection and analysis of explosives and blasting equipment and choosing the mode of longitudinal blasting, the link of the blasting site of the mining area, further study the optimization of mining blasting practice, the choice of drilling and process to determine reasonable blasting parameters, which improving the drilling method. The experimental results show that this optimization scheme improves efficiency blasting of the bauxite mine but also promotes an increase in production.