This paper introduces an internal multiple prediction method based on imaging profile prediction and Kirchhoff demigration.First,based on an inputted prestack time migration profile,the method predicts the prestack ti...This paper introduces an internal multiple prediction method based on imaging profile prediction and Kirchhoff demigration.First,based on an inputted prestack time migration profile,the method predicts the prestack time migration profile that only includes internal multiples by inverse scattering series method.Second,the method uses velocity-weighted Kirchhoff demigration to create shot gathers that contains only internal multiples.Internal multiple prediction based on the prestack time migration profile effectively reduces the computational cost of multiple predictions,and the internal-multiple shot gathers created by Kirchhoff demigration remarkably reduces the complexity of the practical problem.Internal multiple elimination can be conducted through the combined adaptive multiple subtraction based on event tracing.Synthetic and field data tests show that the method effectively predicts internal multiples and possesses considerable potential in field data processing,particularly in areas where internal multiples develop seriously.展开更多
Kirchhoff beam migration is a simplified Gaussian beam migration,which omits the dynamic information and can calculate multi-arrival traveltime,so it is a high-precision and fast seismic imaging method.In the imaging ...Kirchhoff beam migration is a simplified Gaussian beam migration,which omits the dynamic information and can calculate multi-arrival traveltime,so it is a high-precision and fast seismic imaging method.In the imaging process,extracting common image gathers can be used for velocity analysis,improving the accuracy of modeling and imaging quality.Compared with the conventional common image gathers extracting methods,the angle-domain common image gathers extracting method can avoid the artifacts caused by multi-arrival seismic waves.The authors present a new method of extracting common image gathers in angle-domain from Kirchhoff beam migration and verify the method by numerical calculations.展开更多
Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse ef...Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse effects of S-wave splitting and to improve PS- wave imaging quality, we tested methods for pre-stack migration imaging and anisotropic correction of PS-wave data. We based this on the propagation rules of seismic waves in a horizontal transverse isotropy medium, which is a fractured medium model that reflects likely subsurface conditions in the field. We used the radial (R) and transverse (T) components of PS-wave data to separate the fast and slow S-wave components, after which their propagation moveout was effectively extracted. Meanwhile, corrections for the energies and propagation moveouts of the R and T components were implemented using mathematical rotation. The PS-wave imaging quality was distinctly improved, and we demonstrated the reliability of our methods through numerical simulations. Applying our methods to three-dimensional and three-component seismic field data from the Xinchang-Hexingchang region of the Western Sichuan Depression in China, we obtained high-quality seismic imaging with continuous reflection wave groups, distinct structural features, and specific stratigraphic contact relationships. This study provides an effective and reliable approach for data processing that will improve the exploration of complex, hidden lithologic gas reservoirs.展开更多
We propose a combined migration velocity analysis and imaging method based on Kirchhoff integral migration and reverse time migration,using the residual curvature analysis and layer stripping strategy to build the vel...We propose a combined migration velocity analysis and imaging method based on Kirchhoff integral migration and reverse time migration,using the residual curvature analysis and layer stripping strategy to build the velocity model.This method improves the image resolution of Kirchhoff integral migration and reduces the computations of the reverse time migration.It combines the advantages of efficiency and accuracy of the two migration methods.Its application in tunnel seismic prediction shows good results.Numerical experiments show that the imaging results of reverse time migration are better than the imaging results of Kirchhoff integral migration in many aspects of tunnel prediction.Field data show that this method has efficient computations and can establish a reasonable velocity model and a high quality imaging section.Combination with geological information can make an accurate prediction of the front of the tunnel geological structure.展开更多
Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be ap...Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be applied to the prediction of carbonate reservoirs.Amplitude-preserved seismic data processing is the foundation.In this paper,according to the feature of desert seismic data (including weak reflection,fast attenuation of high frequency components,strong coherent noises,low S/N and resolution),a set of amplitude-preserved processing techniques is applied and a reasonable processing flow is formed to obtain the high quality data.After implementing a set of pre-stack amplitude-preserved processing,we test and define the kernel parameters of amplitude-preserved Kirchhoff PSTM (pre-stack time migration) and subsequent gathers processing,in order to obtain the amplitude-preserved gathers used to the isotropic pre-stack inversion for the identification of caved reservoirs.The AVO characteristics of obtained gathers fit well with the synthetic gathers from logging data,and it proves that the processing above is amplitudepreserved.The azimuthal processing techniques,including azimuth division and binning enlargement,are implemented for amplitude-preserved azimuthal gathers with the uniform fold.They can be used in the anisotropic inversion to detect effective fractures.The processing techniques and flows are applied to the field seismic data,and are proved available for providing the amplitude-preserved gathers for carbonate reservoir prediction in the Tarim Basin.展开更多
基金support of the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606401)the National Natural Science Foundation of China (Nos. 41704114 and 41574105)+3 种基金the National Science and Technology Major Project of China (No. 2016Z X05027-002)the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology (No. 2016 ASKJ13)Taishan Scholar Project Funding (No. tspd2016 1007)the Latitudinal Project of Algorithm Research of Internal Multiple Prediction financially supported by CNOOC
文摘This paper introduces an internal multiple prediction method based on imaging profile prediction and Kirchhoff demigration.First,based on an inputted prestack time migration profile,the method predicts the prestack time migration profile that only includes internal multiples by inverse scattering series method.Second,the method uses velocity-weighted Kirchhoff demigration to create shot gathers that contains only internal multiples.Internal multiple prediction based on the prestack time migration profile effectively reduces the computational cost of multiple predictions,and the internal-multiple shot gathers created by Kirchhoff demigration remarkably reduces the complexity of the practical problem.Internal multiple elimination can be conducted through the combined adaptive multiple subtraction based on event tracing.Synthetic and field data tests show that the method effectively predicts internal multiples and possesses considerable potential in field data processing,particularly in areas where internal multiples develop seriously.
基金the Natural Science Foundation of China(No.41804100)the China Postdoctoral Science Foundation(No.2018M640910)the Fundamental Research Funds for the Central Universities(No.2682018CX36)。
文摘Kirchhoff beam migration is a simplified Gaussian beam migration,which omits the dynamic information and can calculate multi-arrival traveltime,so it is a high-precision and fast seismic imaging method.In the imaging process,extracting common image gathers can be used for velocity analysis,improving the accuracy of modeling and imaging quality.Compared with the conventional common image gathers extracting methods,the angle-domain common image gathers extracting method can avoid the artifacts caused by multi-arrival seismic waves.The authors present a new method of extracting common image gathers in angle-domain from Kirchhoff beam migration and verify the method by numerical calculations.
基金supported by the National Natural Science Foundation of China(Grant No.41574099)the National Key Science and Technology Special Projects(grant No.2016ZX05002004-005)
文摘Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse effects of S-wave splitting and to improve PS- wave imaging quality, we tested methods for pre-stack migration imaging and anisotropic correction of PS-wave data. We based this on the propagation rules of seismic waves in a horizontal transverse isotropy medium, which is a fractured medium model that reflects likely subsurface conditions in the field. We used the radial (R) and transverse (T) components of PS-wave data to separate the fast and slow S-wave components, after which their propagation moveout was effectively extracted. Meanwhile, corrections for the energies and propagation moveouts of the R and T components were implemented using mathematical rotation. The PS-wave imaging quality was distinctly improved, and we demonstrated the reliability of our methods through numerical simulations. Applying our methods to three-dimensional and three-component seismic field data from the Xinchang-Hexingchang region of the Western Sichuan Depression in China, we obtained high-quality seismic imaging with continuous reflection wave groups, distinct structural features, and specific stratigraphic contact relationships. This study provides an effective and reliable approach for data processing that will improve the exploration of complex, hidden lithologic gas reservoirs.
基金sponsored by Nation 973 Program(Grant No.2007CB209603)Nation 863 projection(Grant No. 2006AA06Z108)+2 种基金Nation 863 Program(Grant No.2007AA06Z215)Young Teachers Innovation Fund of Jilin University(No. 421032124424)Graduate Innovation Fund of Jilin University(Grant No.20101059)
文摘We propose a combined migration velocity analysis and imaging method based on Kirchhoff integral migration and reverse time migration,using the residual curvature analysis and layer stripping strategy to build the velocity model.This method improves the image resolution of Kirchhoff integral migration and reduces the computations of the reverse time migration.It combines the advantages of efficiency and accuracy of the two migration methods.Its application in tunnel seismic prediction shows good results.Numerical experiments show that the imaging results of reverse time migration are better than the imaging results of Kirchhoff integral migration in many aspects of tunnel prediction.Field data show that this method has efficient computations and can establish a reasonable velocity model and a high quality imaging section.Combination with geological information can make an accurate prediction of the front of the tunnel geological structure.
基金financially supported by National Basic Research Program of China(No.2011CB201100)
文摘Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be applied to the prediction of carbonate reservoirs.Amplitude-preserved seismic data processing is the foundation.In this paper,according to the feature of desert seismic data (including weak reflection,fast attenuation of high frequency components,strong coherent noises,low S/N and resolution),a set of amplitude-preserved processing techniques is applied and a reasonable processing flow is formed to obtain the high quality data.After implementing a set of pre-stack amplitude-preserved processing,we test and define the kernel parameters of amplitude-preserved Kirchhoff PSTM (pre-stack time migration) and subsequent gathers processing,in order to obtain the amplitude-preserved gathers used to the isotropic pre-stack inversion for the identification of caved reservoirs.The AVO characteristics of obtained gathers fit well with the synthetic gathers from logging data,and it proves that the processing above is amplitudepreserved.The azimuthal processing techniques,including azimuth division and binning enlargement,are implemented for amplitude-preserved azimuthal gathers with the uniform fold.They can be used in the anisotropic inversion to detect effective fractures.The processing techniques and flows are applied to the field seismic data,and are proved available for providing the amplitude-preserved gathers for carbonate reservoir prediction in the Tarim Basin.