Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical c...Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.展开更多
The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of ...The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of 304 K (0.18TL ) and 286K (0.17TL ) are achieved and the dendritic growth velocities attain 39.8 and 25.1 m/s, respectively. The transition of morphology from coarse dendrite into equiaxed structure occurs and the grain size of the a (Ni) phase decreases remarkably when the undercooling increases. Both the lattice constant and microhardness increase obviously with the enhancement of undercooling. The enrichment of Cu and Sn solute contents reduces the dendritic growth velocity, while enhances the lattice constant and microhardness of a (Ni) phase.展开更多
The structure of aggregation state and isothermal crystallization behavior of Nylon-1010 have been studied by WAXD, DSE, Variance-Range Function and density measurement. The results show that crystallization of Nylon-...The structure of aggregation state and isothermal crystallization behavior of Nylon-1010 have been studied by WAXD, DSE, Variance-Range Function and density measurement. The results show that crystallization of Nylon-1010 has the most suitable annealing temperature, the crystals of the Nxlon-1010 are two-dimension heterogeneous nucleation. Both low treatment temperature and high crystallization te, temperature are disadvantageous for Nylon-1010 crystal growth.展开更多
The steady-state kinetics for complete oxidation of benzene over has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with t...The steady-state kinetics for complete oxidation of benzene over has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with the inhibition of carbon dioxide. The parameters of the kinetics model were estimated by the method of orthogonal design. The heats of adsorption of benzene, oxygen and carbon dioxide were determined by the method of gas-adsorption chromatography. The details of oscillations of complete oxidation of benzene were investigated.展开更多
Royal palm tree peroxidase (RPTP) has been isolated to homogeneity from leaves of Roystonea regia palm trees. The enzyme purification steps included homogenization, (NH4)SO4 precipitation, extraction of palm leaf colo...Royal palm tree peroxidase (RPTP) has been isolated to homogeneity from leaves of Roystonea regia palm trees. The enzyme purification steps included homogenization, (NH4)SO4 precipitation, extraction of palm leaf colored compounds and consecutive chromatography on Phenyl-Sepharose, TSK-Gel DEAE-5PW and Superdex-200. The novel peroxidase was characterized as having a molecular weight of 48.2 ± 3.0 kDa and an isoelectric point pI 5.4 ± 0.1. The enzyme forms dimers in solution with approximate molecular weight of 92 ± 2 kDa. Here we investigated the steady-state kinetic mechanism of the H2O2-supported oxidation of different organic substrates by RPTP. The results of the analysis of the initial rates vs. H2O2 and reducing substrate concentrations were seen to be consistent with a substrate-inhibited Ping-Pong Bi-Bi reaction mechanism. The phenomenological approach used expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and affords an interpretation of the effects in terms of the kinetic parameters KmH2O2, KmAH2, kcat, KSIH2O2, KSIAH2 and of the microscopic rate constants k1 and k3 of the shared three-step peroxidase catalytic cycle. Furthermore, the concentration and time-dependences and the mechanism of the suicide inactivation of RPTP by hydrogen peroxide were studied kinetically with guaiacol as co-substrate. The turnover number (r) of H2O2 required to complete the inactivation of the enzyme was 2154 ± 100 and the apparent rate constants of catalysis 185 s–1 and 18 s–1.展开更多
This work presents new experimental results on the kinetics of mineral dissolution in near-critical and supercritical water in a temperature range (T) from 25 to 400°C and a constant pressure of 23 MPa. Kinetic e...This work presents new experimental results on the kinetics of mineral dissolution in near-critical and supercritical water in a temperature range (T) from 25 to 400°C and a constant pressure of 23 MPa. Kinetic experiments were carried out by using a flow reactor (packed bed reactor) of an open system. The dissolution rates of albite and magnetite were measured under these experimental conditions. Na, Al and Si release rates for albite dissolution in water were measured as a function of the temperature and flow velocity in the reaction system. The maximum release rates of Na, Al and Si of albite dissolution in the hydrothermal flow systems under different flow velocities were always obtained at 300°C, that is to say, the maximum albite dissolution rates in the flow systems, regardless of different flow rates, were repeatedly measured at 300°C. Results indicate a wide fluctuation in albite dissolution rates occurring close to the critical point of water. The dissolution rates increased when the temperatures increased from 25 to 300°C and decreased when the temperatures increase from 300 to 400°C. At some flow velocities, the dissolution rates rose as the temperature surpassed 374°C. Albite dissolution was incongruent in water at most temperatures. It was only at 300°C that albite dissolution was congruent. The albite dissolution from 25 to 300°C (at 23 MPa) will change from incongruent to congruent, whereas from subcritical 300 to 400°C (at 23 MPa), the dissolution will change from congruent to incongruent. The release ratio of Al/Si (or Na/Si) is positive at T<300°C, and it is negative at T>300°C. The dissolution rates of magnetite in water increased with increasing T until T at the critical point of water or around it. The authors believe that this is caused by the wide fluctuations in water properties under the conditions from the near-critical to supercritical state.展开更多
Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-ste...Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-steady state assumption.Effects of hydration temperature,product concentration and substrate concentration on NHase deactivation were investigated experimentally and correlated with a first order deactivation kinetics.The results showed that the hydration temperature and product concentration were major factors governing the deactivation of NHases under substrate-feeding conditions.When acrylamide concentration was higher than 250 g·L1,the deactivation of NHases became serious and the bi-steady state assumption was not applicable.When the hydration temperature was controlled at a relatively higher level such as 28°C,the total deactivation rate constant was about 2.8-fold of that at 20°C.展开更多
Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during pract...Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated.Herein,Pt-nanoparticle-decorated CdS nanorods(CdS/Pt)are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction.Through femtosecond transient absorption spectroscopy,three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states,recombination of free electrons and trapped holes,and radiative recombination of locally photogenerated electron-hole pairs.The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface.When CdS/Pt is dispersed in acetonitrile,the lifetime and rate for interfacial electron transfer are respectively calculated to be~5.5 ps and~3.5×10^(10) s^(−1).The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting.The lifetime of the interfacial electron transfer decreases to~5.1 ps and the electron transfer rate increases to~4.9×10^(10) s^(−1),confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution.This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics.展开更多
An industrial mineral wollastonite (CaSiO3) was produced under solid state conditions from rice husk silica and limestone. Reaction was carried out at 900'C to 1300'C for 1 h. The product batches were subjecte...An industrial mineral wollastonite (CaSiO3) was produced under solid state conditions from rice husk silica and limestone. Reaction was carried out at 900'C to 1300'C for 1 h. The product batches were subjected to XRD and chemical analysis techniques specific for wollastonite. Mole fractions of different product batches were calculated on the basis of accumulated data to study the kinetics. Specific rate constants and reaction rate were also found out. Various probable models of mechanism for reaction were considered and testified with the laid down criterion for suggesting the suitable one. The resulting data were treated with Arrhenius equation as well and activation energy was calculated--therefrom. In addition to finding it's value from the slope of Arrhenius curve, an alternate method was also applied for this purpose. Both of the values were observed to be comparable. The activation energy required for performed reaction was found to be almost one third of that reported for synthesizing CaSiO3 by using quartz. This referred to the economical preparation of wollastonite by using rice husk as a source of silica instead of quartz.展开更多
The precursor of nanocrystalline ZrO2 was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O,and Na2CO3·10H2O as raw materials.The nanocrystalline ZrO2 was obtained by calcining the precursor....The precursor of nanocrystalline ZrO2 was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O,and Na2CO3·10H2O as raw materials.The nanocrystalline ZrO2 was obtained by calcining the precursor.The precursor and its calcined products were characterized using TG/DTA,FT-IR,XRD,and SEM.The results showed that the precursor dried at 353 K was a zirconyl carbonate compound.When the precursor was calcined at 673 K for 150min,highly crystallization ZrO2 with tetragonal structure (space group P42/nmc (137)) was obtained with a crystallite size of 24 nm.However,when the precursor was calcined at 1023 K for 150min,highly crystallization ZrO2 with monoclinic structure (space group P21/c (14)) was obtained with a crystallite size of 20 nm.The mechanism and kinetics of the thermal process of the precursor were studied using DTA and XRD techniques.Based on the Kissinger and Arrhenius equation,the values of the activation energies associated with the thermal process of the precursor were determined to be 26.80 and 566.73 kJ·mol-1 for the first and third steps,respectively.The mechanism of ZrO2 phase transition from tetragonal to monoclinic structure is the random nucleation and growth of nuclei reaction.展开更多
A new, convenient, and rapid method for kinetic measurement of human fibrinolysis was established. The alteration of absorbance (A) in the process of blood coagulation and lyses was automatically scanned and recorde...A new, convenient, and rapid method for kinetic measurement of human fibrinolysis was established. The alteration of absorbance (A) in the process of blood coagulation and lyses was automatically scanned and recorded using a UV2000 spectrophotometer connected to a computer. The parameters of human fibrinolysis kinetics were established. Urokinase at 20 U/mL was the optimal concentration used. There was significant difference in fibrinolysis kinetics and plasma plasminogen concentration between 22 normal subjects and 27 patients with acute myeloblastic leukemia (P〈0.05 and 〈0.01 respectively). The coefiicience of variation was (5.24±1,51)%. This method could also be used to measure the plasma fibrinogen concentration at the same time. It was concluded that this method was stable and was capable of providing dynamic, direct experimental data and multiparemeters for clinicians. It was also valuable in evaluating the anti- and pro-fibrinolytic capcity of patients' plasmas, allowing for monitoring of therapy, choice of drugs and adjustment of drug concentrations.展开更多
A density matrix is usually obtained by solving the Bloch equation, however only a few Hamiltonians' density matrices can be analytically derived. The density matrix for two interacting particles with kinetic couplin...A density matrix is usually obtained by solving the Bloch equation, however only a few Hamiltonians' density matrices can be analytically derived. The density matrix for two interacting particles with kinetic coupling is hard to derive by the usual method due to this coupling; this paper solves this problem by using the bipartite entangled state representation.展开更多
The formations of [NAPA-A(H<sub>2</sub>O)<sub>n</sub> (n = 1, 2, 3, 4)] complexes have been studied employing DFT/wB97XD/cc-pVTZ computational level to understand the kinetics and thermodynamic...The formations of [NAPA-A(H<sub>2</sub>O)<sub>n</sub> (n = 1, 2, 3, 4)] complexes have been studied employing DFT/wB97XD/cc-pVTZ computational level to understand the kinetics and thermodynamics for the hydration reactions of N-acetyl-phenylalaninylamide (NAPA). Thermodynamic parameters such as reaction energy (E), enthalpy (H), Gibb’s free energy (G), specific heat capacity (C<sub>v</sub>), entropy (S), and change of these parameters (ΔE<sub>r</sub>, ΔH<sub>r</sub>, ΔGr, ΔC<sub>r</sub>, and ΔS<sub>r</sub>) were studied using the explicit solvent model. The predicted values of H, G, C, and S increase with the sequential addition of water in NAPA-A due to the increase in the total number of vibrational modes. On the other hand, the value of ΔE<sub>r</sub>, ΔH<sub>r</sub>, and ΔG<sub>r</sub> increases (more negative to less negative) gradually for n = 1, 2, 3, and 4 that indicates an increase of hydration in NAPA-A makes exothermic to endothermic reactions. The barrier heights for the transition states (TS) of [NAPA-A(H<sub>2</sub>O)<sub>n</sub> (n = 1, 2, 3, 4)] complexes are predicted to lie at 4.41, 4.05, 3.72 and 2.26 kcal/mol respectively below the reactants. According to the calculations, the formations of [NAPA-A(H<sub>2</sub>O)<sub>1</sub>] and [NAPA-A(H<sub>2</sub>O)<sub>2</sub>] complexes are barrierless reactions because both water molecules are strongly bonded via two hydrogen bonds in the backbone of NAPA-A. On the contrary, the reactions of [NAPA-A(H<sub>2</sub>O)<sub>3</sub>] and [NAPA-A(H<sub>2</sub>O)<sub>4</sub>] complexation are endothermic and the barrier heights are predicted to stay at 6.30 and 10.54 kcal/mol respectively above the reactants. The free energy of activation (Δ<sup>‡</sup>G<sup>0</sup>) for the reaction of [NAPA-A(H<sub>2</sub>O)<sub>1</sub>], [NAPA-A(H<sub>2</sub>O)<sub>2</sub>], [NAPA-A(H<sub>2</sub>O)<sub>3</sub>], and [NAPA-A(H<sub>2</sub>O)<sub>4</sub>] complexation are 4.43, 4.28, 3.83 and 5.11 kcal/mol respectively which are very low. As well as the rates of reactions are 3.490 × 10<sup>9</sup> s<sup>-1</sup>, 4.514 × 10<sup>9</sup> s<sup>-1</sup>, 9.688 × 10<sup>9</sup> s<sup>-1</sup>, and 1.108 × 10<sup>9</sup> s<sup>-1</sup> respectively which are very fast and spontaneous.展开更多
Precursor of nanocrystalline Zno.sNio.sFe2O4 was obtained by grinding mixture of ZnSO4.7H2O, NiSO4.6H2O, FeSO4.7H2O, and Na2CO3.10H2O under the condition of suffactant polyethylene glycol (PEG)-400 being present at ...Precursor of nanocrystalline Zno.sNio.sFe2O4 was obtained by grinding mixture of ZnSO4.7H2O, NiSO4.6H2O, FeSO4.7H2O, and Na2CO3.10H2O under the condition of suffactant polyethylene glycol (PEG)-400 being present at room temperature, washing the mixture with water to remove soluble inorganic salts and drying it at 373 K. The spinel Zn0.5Ni0.5Fe2O4 was obtained via calcining precursor above 773 K. The precursor and its calcined products were characterized by differential scanning calorimetry (DSC), Fourier transform infrared (FF-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The result showed that Zn0.sNio.sFe204 obtained at 1073 K had a saturation magnetization of 74 A.mLkg-1. Kinetics of the crystallization process of Zn0.5Ni0.5Fe2O4 was studied using DSC technique, and kinetic parameters were determined by Kissinger equation and Moynihan et al. equation. The value of the activation energy associated with the crystallization process of Zr0.5Ni0.5Fe2O4 is 220.89 kJ-mol-1. The average value of the Avrami exponent, n, is equal to 1.59±0.13, which suggests that crystallization process of Zn0.5Ni0.5Fe2O4 is the random nucleation and growth of nuclei reaction.展开更多
Ni/Sn couples, prepared by sequentially electroplating Ni layers and Sn layers on metallized Si wafers, were employed to study the microstructures and growth kinetics of Ni-Sn intermediate phases, when the Ni/Sn coupl...Ni/Sn couples, prepared by sequentially electroplating Ni layers and Sn layers on metallized Si wafers, were employed to study the microstructures and growth kinetics of Ni-Sn intermediate phases, when the Ni/Sn couples were aged at room temperature or armealed at temperatures from 150 to 225℃ for various times. The results show that the NiSn phase and Ni3Sn4 phase are formed, respectively, in the aged couples and annealed couples. The Ni3Sn4 layer is continuously distributed between the Ni and Sn sides in the annealed Ni/Sn couples. The Ni3Sn4 growth follows parabolic growth kinetics with an apparent activation energy of 39.0 kJ/mol.展开更多
Objective To investigate the photocatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photoeatalyst supported on latex paint film under UV-irradiation. Methods Experiments were conducted to ...Objective To investigate the photocatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photoeatalyst supported on latex paint film under UV-irradiation. Methods Experiments were conducted to study the relationship between the initial concentration of ammonia and the degradation products competing to be adsorbed on catalyst surface. Degradation of ammonia and its products were detected by spectrophotometry and catalytic kinetic spectrophotometry, respectively. Results On the one hand, TiO2 catalyst was excellent for degradation of ammonia, and the crystal phase of TiO2, anatase or ruffle, had little effect on degradation of ammonia, but the conversion of ammonia grew with the increase of catalyst content. On the other hand, apparent rate constant and conversion of ammonia decreased with the increase of initial concentration of ammonia, and the photocatalytic degradation reaction followed a pseudo-first-order expression due to-the evidence of linear correlation between -lnC/C0 vs. irradiation time t, but the relationship between initial concentration and the degradation products was not linear in low initial concentration. Conclusion Whether the photocatalytic degradation of ammonia in static state follows a first-order reaction depends on the initial ammonia concentration due to competition in adsorption between reactant and the degradation products.展开更多
Cu/Sn couples, prepared by sequentially electroplating Cu and Sn layers on metallized Si wafers, were employed to study the microstructures, phases and the growth kinetics of Cu-Sn intermediate phases, when electropla...Cu/Sn couples, prepared by sequentially electroplating Cu and Sn layers on metallized Si wafers, were employed to study the microstructures, phases and the growth kinetics of Cu-Sn intermediate phases, when electroplated Cu/Sn couples were aged at room temperature or annealed at temperatures from 373 K to 498 K for various time. Only Cu6Sn5 formed in aged couples or couples annealed at temperature below 398 K. The Cu6Sn5 layer was continuous, but not uniform, with protrusions extending into the Sn matrix. When Cu/Sn couples were annealed at temperatures from 423 K to 498 K, two continuous and uniform Cn6Sn5/Cu3Sn layers formed within the reaction region between Sn and Cu. There were many voids near the Cu3Sn/Cu interface and within the Cu3Sn layer. Cu6Sn5 and Cu3Sn formations both follow parabolic growth kinetics with activation energies of 41.4 kJ/mol for Cu6Sn5 and 90.4 kJ/mol for Cu3Sn, respectively.展开更多
The catalytic oxidation of ethylene to carbon dioxide in excess air has been studied atsteady state.The catalyst temperature was measured for various feed temperature and concentration.The bifurcation diagrams Which d...The catalytic oxidation of ethylene to carbon dioxide in excess air has been studied atsteady state.The catalyst temperature was measured for various feed temperature and concentration.The bifurcation diagrams Which describe the dependence of the catalyst temperature on the feed gastemperature were obtained for different ethylene concentrations in the feed gas.The ignition and ex-tinction temperatures were found out and the unique and multiple steady state regions could bedetermined from these diagrams.The experimental results can be satisfactorily explained by thecatastrophe theory and singularity theory.According to the steady state multiplicity features an at-tempt to discriminate the competitive kinetic models was made for the reaction.展开更多
A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It ...A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas, ranging from low Z to high Z elements. The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision. Furthermore, the NLTE effects are investigated by virtue of the model, and the differences between CRSS and LTE models for low density plasmas are quite evident.展开更多
We study kinetic models of reversible enzyme reactions and compare two techniques for analytic approximate solutions of the model. Analytic approximate solutions of non-linear reaction equations for reversible enzyme ...We study kinetic models of reversible enzyme reactions and compare two techniques for analytic approximate solutions of the model. Analytic approximate solutions of non-linear reaction equations for reversible enzyme reactions are calculated using the Homotopy Perturbation Method (HPM) and the Simple Iteration Method (SIM). The results of the approximations are similar. The Matlab programs are included in appendices.展开更多
基金supported by the Natural Science Foundation of Anhui Province(No.2208085J01 and No.2208085QA28).
文摘Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51327901 and 51301138the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20126102120064+1 种基金the Aviation Science Foundation of China under Grant No 2014ZF53069the Fundamental Research Funds for the Central Universities under Grant No3102014KYJD044
文摘The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of 304 K (0.18TL ) and 286K (0.17TL ) are achieved and the dendritic growth velocities attain 39.8 and 25.1 m/s, respectively. The transition of morphology from coarse dendrite into equiaxed structure occurs and the grain size of the a (Ni) phase decreases remarkably when the undercooling increases. Both the lattice constant and microhardness increase obviously with the enhancement of undercooling. The enrichment of Cu and Sn solute contents reduces the dendritic growth velocity, while enhances the lattice constant and microhardness of a (Ni) phase.
文摘The structure of aggregation state and isothermal crystallization behavior of Nylon-1010 have been studied by WAXD, DSE, Variance-Range Function and density measurement. The results show that crystallization of Nylon-1010 has the most suitable annealing temperature, the crystals of the Nxlon-1010 are two-dimension heterogeneous nucleation. Both low treatment temperature and high crystallization te, temperature are disadvantageous for Nylon-1010 crystal growth.
基金Supported by the National Sciences Fundation of China.
文摘The steady-state kinetics for complete oxidation of benzene over has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with the inhibition of carbon dioxide. The parameters of the kinetics model were estimated by the method of orthogonal design. The heats of adsorption of benzene, oxygen and carbon dioxide were determined by the method of gas-adsorption chromatography. The details of oscillations of complete oxidation of benzene were investigated.
文摘Royal palm tree peroxidase (RPTP) has been isolated to homogeneity from leaves of Roystonea regia palm trees. The enzyme purification steps included homogenization, (NH4)SO4 precipitation, extraction of palm leaf colored compounds and consecutive chromatography on Phenyl-Sepharose, TSK-Gel DEAE-5PW and Superdex-200. The novel peroxidase was characterized as having a molecular weight of 48.2 ± 3.0 kDa and an isoelectric point pI 5.4 ± 0.1. The enzyme forms dimers in solution with approximate molecular weight of 92 ± 2 kDa. Here we investigated the steady-state kinetic mechanism of the H2O2-supported oxidation of different organic substrates by RPTP. The results of the analysis of the initial rates vs. H2O2 and reducing substrate concentrations were seen to be consistent with a substrate-inhibited Ping-Pong Bi-Bi reaction mechanism. The phenomenological approach used expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and affords an interpretation of the effects in terms of the kinetic parameters KmH2O2, KmAH2, kcat, KSIH2O2, KSIAH2 and of the microscopic rate constants k1 and k3 of the shared three-step peroxidase catalytic cycle. Furthermore, the concentration and time-dependences and the mechanism of the suicide inactivation of RPTP by hydrogen peroxide were studied kinetically with guaiacol as co-substrate. The turnover number (r) of H2O2 required to complete the inactivation of the enzyme was 2154 ± 100 and the apparent rate constants of catalysis 185 s–1 and 18 s–1.
基金We would like to thank the Ministry of Science and Technology and the Ministry of Land and Resources for supporting our projectThe experimental results presented in this paper were obtained with the financial support of GTB basic research fund 9501115+1 种基金the“Climbing Project”95-Pre-39,G1999043212National Natural ScienceFoundation of China grant 29673008.
文摘This work presents new experimental results on the kinetics of mineral dissolution in near-critical and supercritical water in a temperature range (T) from 25 to 400°C and a constant pressure of 23 MPa. Kinetic experiments were carried out by using a flow reactor (packed bed reactor) of an open system. The dissolution rates of albite and magnetite were measured under these experimental conditions. Na, Al and Si release rates for albite dissolution in water were measured as a function of the temperature and flow velocity in the reaction system. The maximum release rates of Na, Al and Si of albite dissolution in the hydrothermal flow systems under different flow velocities were always obtained at 300°C, that is to say, the maximum albite dissolution rates in the flow systems, regardless of different flow rates, were repeatedly measured at 300°C. Results indicate a wide fluctuation in albite dissolution rates occurring close to the critical point of water. The dissolution rates increased when the temperatures increased from 25 to 300°C and decreased when the temperatures increase from 300 to 400°C. At some flow velocities, the dissolution rates rose as the temperature surpassed 374°C. Albite dissolution was incongruent in water at most temperatures. It was only at 300°C that albite dissolution was congruent. The albite dissolution from 25 to 300°C (at 23 MPa) will change from incongruent to congruent, whereas from subcritical 300 to 400°C (at 23 MPa), the dissolution will change from congruent to incongruent. The release ratio of Al/Si (or Na/Si) is positive at T<300°C, and it is negative at T>300°C. The dissolution rates of magnetite in water increased with increasing T until T at the critical point of water or around it. The authors believe that this is caused by the wide fluctuations in water properties under the conditions from the near-critical to supercritical state.
基金Supported by the Foundation for the Authors of National Excellent Doctoral Dissertation of China (200345)the National High Technology Research and Development Program of China (2007AA02Z201)the National Basic Research Program of China (2007CB714304)
文摘Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-steady state assumption.Effects of hydration temperature,product concentration and substrate concentration on NHase deactivation were investigated experimentally and correlated with a first order deactivation kinetics.The results showed that the hydration temperature and product concentration were major factors governing the deactivation of NHases under substrate-feeding conditions.When acrylamide concentration was higher than 250 g·L1,the deactivation of NHases became serious and the bi-steady state assumption was not applicable.When the hydration temperature was controlled at a relatively higher level such as 28°C,the total deactivation rate constant was about 2.8-fold of that at 20°C.
文摘Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated.Herein,Pt-nanoparticle-decorated CdS nanorods(CdS/Pt)are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction.Through femtosecond transient absorption spectroscopy,three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states,recombination of free electrons and trapped holes,and radiative recombination of locally photogenerated electron-hole pairs.The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface.When CdS/Pt is dispersed in acetonitrile,the lifetime and rate for interfacial electron transfer are respectively calculated to be~5.5 ps and~3.5×10^(10) s^(−1).The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting.The lifetime of the interfacial electron transfer decreases to~5.1 ps and the electron transfer rate increases to~4.9×10^(10) s^(−1),confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution.This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics.
文摘An industrial mineral wollastonite (CaSiO3) was produced under solid state conditions from rice husk silica and limestone. Reaction was carried out at 900'C to 1300'C for 1 h. The product batches were subjected to XRD and chemical analysis techniques specific for wollastonite. Mole fractions of different product batches were calculated on the basis of accumulated data to study the kinetics. Specific rate constants and reaction rate were also found out. Various probable models of mechanism for reaction were considered and testified with the laid down criterion for suggesting the suitable one. The resulting data were treated with Arrhenius equation as well and activation energy was calculated--therefrom. In addition to finding it's value from the slope of Arrhenius curve, an alternate method was also applied for this purpose. Both of the values were observed to be comparable. The activation energy required for performed reaction was found to be almost one third of that reported for synthesizing CaSiO3 by using quartz. This referred to the economical preparation of wollastonite by using rice husk as a source of silica instead of quartz.
基金financially supported by the National Natural Scientific Foundation of China (No.201161002)
文摘The precursor of nanocrystalline ZrO2 was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O,and Na2CO3·10H2O as raw materials.The nanocrystalline ZrO2 was obtained by calcining the precursor.The precursor and its calcined products were characterized using TG/DTA,FT-IR,XRD,and SEM.The results showed that the precursor dried at 353 K was a zirconyl carbonate compound.When the precursor was calcined at 673 K for 150min,highly crystallization ZrO2 with tetragonal structure (space group P42/nmc (137)) was obtained with a crystallite size of 24 nm.However,when the precursor was calcined at 1023 K for 150min,highly crystallization ZrO2 with monoclinic structure (space group P21/c (14)) was obtained with a crystallite size of 20 nm.The mechanism and kinetics of the thermal process of the precursor were studied using DTA and XRD techniques.Based on the Kissinger and Arrhenius equation,the values of the activation energies associated with the thermal process of the precursor were determined to be 26.80 and 566.73 kJ·mol-1 for the first and third steps,respectively.The mechanism of ZrO2 phase transition from tetragonal to monoclinic structure is the random nucleation and growth of nuclei reaction.
文摘A new, convenient, and rapid method for kinetic measurement of human fibrinolysis was established. The alteration of absorbance (A) in the process of blood coagulation and lyses was automatically scanned and recorded using a UV2000 spectrophotometer connected to a computer. The parameters of human fibrinolysis kinetics were established. Urokinase at 20 U/mL was the optimal concentration used. There was significant difference in fibrinolysis kinetics and plasma plasminogen concentration between 22 normal subjects and 27 patients with acute myeloblastic leukemia (P〈0.05 and 〈0.01 respectively). The coefiicience of variation was (5.24±1,51)%. This method could also be used to measure the plasma fibrinogen concentration at the same time. It was concluded that this method was stable and was capable of providing dynamic, direct experimental data and multiparemeters for clinicians. It was also valuable in evaluating the anti- and pro-fibrinolytic capcity of patients' plasmas, allowing for monitoring of therapy, choice of drugs and adjustment of drug concentrations.
文摘A density matrix is usually obtained by solving the Bloch equation, however only a few Hamiltonians' density matrices can be analytically derived. The density matrix for two interacting particles with kinetic coupling is hard to derive by the usual method due to this coupling; this paper solves this problem by using the bipartite entangled state representation.
文摘The formations of [NAPA-A(H<sub>2</sub>O)<sub>n</sub> (n = 1, 2, 3, 4)] complexes have been studied employing DFT/wB97XD/cc-pVTZ computational level to understand the kinetics and thermodynamics for the hydration reactions of N-acetyl-phenylalaninylamide (NAPA). Thermodynamic parameters such as reaction energy (E), enthalpy (H), Gibb’s free energy (G), specific heat capacity (C<sub>v</sub>), entropy (S), and change of these parameters (ΔE<sub>r</sub>, ΔH<sub>r</sub>, ΔGr, ΔC<sub>r</sub>, and ΔS<sub>r</sub>) were studied using the explicit solvent model. The predicted values of H, G, C, and S increase with the sequential addition of water in NAPA-A due to the increase in the total number of vibrational modes. On the other hand, the value of ΔE<sub>r</sub>, ΔH<sub>r</sub>, and ΔG<sub>r</sub> increases (more negative to less negative) gradually for n = 1, 2, 3, and 4 that indicates an increase of hydration in NAPA-A makes exothermic to endothermic reactions. The barrier heights for the transition states (TS) of [NAPA-A(H<sub>2</sub>O)<sub>n</sub> (n = 1, 2, 3, 4)] complexes are predicted to lie at 4.41, 4.05, 3.72 and 2.26 kcal/mol respectively below the reactants. According to the calculations, the formations of [NAPA-A(H<sub>2</sub>O)<sub>1</sub>] and [NAPA-A(H<sub>2</sub>O)<sub>2</sub>] complexes are barrierless reactions because both water molecules are strongly bonded via two hydrogen bonds in the backbone of NAPA-A. On the contrary, the reactions of [NAPA-A(H<sub>2</sub>O)<sub>3</sub>] and [NAPA-A(H<sub>2</sub>O)<sub>4</sub>] complexation are endothermic and the barrier heights are predicted to stay at 6.30 and 10.54 kcal/mol respectively above the reactants. The free energy of activation (Δ<sup>‡</sup>G<sup>0</sup>) for the reaction of [NAPA-A(H<sub>2</sub>O)<sub>1</sub>], [NAPA-A(H<sub>2</sub>O)<sub>2</sub>], [NAPA-A(H<sub>2</sub>O)<sub>3</sub>], and [NAPA-A(H<sub>2</sub>O)<sub>4</sub>] complexation are 4.43, 4.28, 3.83 and 5.11 kcal/mol respectively which are very low. As well as the rates of reactions are 3.490 × 10<sup>9</sup> s<sup>-1</sup>, 4.514 × 10<sup>9</sup> s<sup>-1</sup>, 9.688 × 10<sup>9</sup> s<sup>-1</sup>, and 1.108 × 10<sup>9</sup> s<sup>-1</sup> respectively which are very fast and spontaneous.
基金financially supported by the National Natural Science Foundation of China (No.21161002)the Guangxi Science and Technology Agency Research Item,China (No.0992001-5)
文摘Precursor of nanocrystalline Zno.sNio.sFe2O4 was obtained by grinding mixture of ZnSO4.7H2O, NiSO4.6H2O, FeSO4.7H2O, and Na2CO3.10H2O under the condition of suffactant polyethylene glycol (PEG)-400 being present at room temperature, washing the mixture with water to remove soluble inorganic salts and drying it at 373 K. The spinel Zn0.5Ni0.5Fe2O4 was obtained via calcining precursor above 773 K. The precursor and its calcined products were characterized by differential scanning calorimetry (DSC), Fourier transform infrared (FF-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The result showed that Zn0.sNio.sFe204 obtained at 1073 K had a saturation magnetization of 74 A.mLkg-1. Kinetics of the crystallization process of Zn0.5Ni0.5Fe2O4 was studied using DSC technique, and kinetic parameters were determined by Kissinger equation and Moynihan et al. equation. The value of the activation energy associated with the crystallization process of Zr0.5Ni0.5Fe2O4 is 220.89 kJ-mol-1. The average value of the Avrami exponent, n, is equal to 1.59±0.13, which suggests that crystallization process of Zn0.5Ni0.5Fe2O4 is the random nucleation and growth of nuclei reaction.
基金the Natural Sciences and Engineering Research Council(NSERC) of Canada and Micralyne Inc.for providing the research fund and Si substrates for electroplating(Micralyne)
文摘Ni/Sn couples, prepared by sequentially electroplating Ni layers and Sn layers on metallized Si wafers, were employed to study the microstructures and growth kinetics of Ni-Sn intermediate phases, when the Ni/Sn couples were aged at room temperature or armealed at temperatures from 150 to 225℃ for various times. The results show that the NiSn phase and Ni3Sn4 phase are formed, respectively, in the aged couples and annealed couples. The Ni3Sn4 layer is continuously distributed between the Ni and Sn sides in the annealed Ni/Sn couples. The Ni3Sn4 growth follows parabolic growth kinetics with an apparent activation energy of 39.0 kJ/mol.
基金This work has been supported by Shandong Provincial Scientific Council, People’s Republic of China (Grant No. Z2000B01)
文摘Objective To investigate the photocatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photoeatalyst supported on latex paint film under UV-irradiation. Methods Experiments were conducted to study the relationship between the initial concentration of ammonia and the degradation products competing to be adsorbed on catalyst surface. Degradation of ammonia and its products were detected by spectrophotometry and catalytic kinetic spectrophotometry, respectively. Results On the one hand, TiO2 catalyst was excellent for degradation of ammonia, and the crystal phase of TiO2, anatase or ruffle, had little effect on degradation of ammonia, but the conversion of ammonia grew with the increase of catalyst content. On the other hand, apparent rate constant and conversion of ammonia decreased with the increase of initial concentration of ammonia, and the photocatalytic degradation reaction followed a pseudo-first-order expression due to-the evidence of linear correlation between -lnC/C0 vs. irradiation time t, but the relationship between initial concentration and the degradation products was not linear in low initial concentration. Conclusion Whether the photocatalytic degradation of ammonia in static state follows a first-order reaction depends on the initial ammonia concentration due to competition in adsorption between reactant and the degradation products.
基金the Natural Sciences and Engineering Research Council (NSERC) of Canada and Micralyne, Inc. for providing research funding and Si substrates for electroplating (Micralyne)
文摘Cu/Sn couples, prepared by sequentially electroplating Cu and Sn layers on metallized Si wafers, were employed to study the microstructures, phases and the growth kinetics of Cu-Sn intermediate phases, when electroplated Cu/Sn couples were aged at room temperature or annealed at temperatures from 373 K to 498 K for various time. Only Cu6Sn5 formed in aged couples or couples annealed at temperature below 398 K. The Cu6Sn5 layer was continuous, but not uniform, with protrusions extending into the Sn matrix. When Cu/Sn couples were annealed at temperatures from 423 K to 498 K, two continuous and uniform Cn6Sn5/Cu3Sn layers formed within the reaction region between Sn and Cu. There were many voids near the Cu3Sn/Cu interface and within the Cu3Sn layer. Cu6Sn5 and Cu3Sn formations both follow parabolic growth kinetics with activation energies of 41.4 kJ/mol for Cu6Sn5 and 90.4 kJ/mol for Cu3Sn, respectively.
基金Supported by The Doctoral Studies Foundation of Science and Technology,State Education Committee of China
文摘The catalytic oxidation of ethylene to carbon dioxide in excess air has been studied atsteady state.The catalyst temperature was measured for various feed temperature and concentration.The bifurcation diagrams Which describe the dependence of the catalyst temperature on the feed gastemperature were obtained for different ethylene concentrations in the feed gas.The ignition and ex-tinction temperatures were found out and the unique and multiple steady state regions could bedetermined from these diagrams.The experimental results can be satisfactorily explained by thecatastrophe theory and singularity theory.According to the steady state multiplicity features an at-tempt to discriminate the competitive kinetic models was made for the reaction.
基金supported by National Natural Science Foundation of China(No.10475065)
文摘A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas, ranging from low Z to high Z elements. The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision. Furthermore, the NLTE effects are investigated by virtue of the model, and the differences between CRSS and LTE models for low density plasmas are quite evident.
文摘We study kinetic models of reversible enzyme reactions and compare two techniques for analytic approximate solutions of the model. Analytic approximate solutions of non-linear reaction equations for reversible enzyme reactions are calculated using the Homotopy Perturbation Method (HPM) and the Simple Iteration Method (SIM). The results of the approximations are similar. The Matlab programs are included in appendices.