During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques...During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques(including conventional pre-stressed anchoring cable and unconventional anchoring hole)are usually utilized,however,having several obvious defects.Thus,it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes.For this reason,the authors develop the pre-stressed anchoring beam technique,in which tensile capacity of pre-stressed structures are fully utilized.It is analyzed that the new technique is characterized by multi-functions,including engineering investigation,efficient reinforcement,drainage,monitoring and urgent strength supplement,and hoped to be extensively applicable in the reinforcement of high-steep slopes.展开更多
A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC....A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC. The slope will remain stable if the unbalanced force is counterbalanced by a reinforcement force which is produced by a suitable reinforcement method. In this paper, the stability of the slope was analyzed by using FLAC, and the unbalanced force of the slope was obtained through the FISH function in FLAC. According to the equilibrium conditions, the relationship between the reinforcement force and unbalanced force was derived and accordingly the reinforcement force was determined. The reinforcement design was adopted by using pre-stressed anchor bars on the basis of the reinforcement force. An example is used to show that the effect of slope reinforcement based on the reinforcement force is safe and economical. The method doesn't need to suppose a sliding surface to obtain the reinforcement force, and it is also clear in physical meaning. So this method realized the organic unification of the stability analysis and the slope reinforcement.展开更多
纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的GFRP筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应...纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的GFRP筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应变,研究大直径喷砂GFRP锚杆在框架梁锚固条件下的受力破坏机制。研究表明,本试验大直径25 mm GFRP锚杆在拉拔力、平均黏结强度方面均达到相同直径螺纹钢筋锚杆的设计指标,最合理的框架梁厚度为30~40 cm;瞬时荷载循环对GFRP锚杆界面黏结状态无明显影响;持续荷载作用下杆体界面的黏结状态会发生蜕化,随时间延续蜕化向深部扩展,荷载越大扩展深度越大,蜕化速度越快;光纤光栅监测技术是发现和观察锚杆界面黏结状态蜕化过程的有效手段。展开更多
基金This paper was financially supported by the Project 973 of Chinese National Program of Basic Research (No. 2002CB412701) the National Natural Science Foundation (No. 40502027)the Project of Innovation Program of Chinese Academy of Sciences (No. KZCX2-306).
文摘During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques(including conventional pre-stressed anchoring cable and unconventional anchoring hole)are usually utilized,however,having several obvious defects.Thus,it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes.For this reason,the authors develop the pre-stressed anchoring beam technique,in which tensile capacity of pre-stressed structures are fully utilized.It is analyzed that the new technique is characterized by multi-functions,including engineering investigation,efficient reinforcement,drainage,monitoring and urgent strength supplement,and hoped to be extensively applicable in the reinforcement of high-steep slopes.
基金Project 50492073 supported by National Natural Science Foundation of China
文摘A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC. The slope will remain stable if the unbalanced force is counterbalanced by a reinforcement force which is produced by a suitable reinforcement method. In this paper, the stability of the slope was analyzed by using FLAC, and the unbalanced force of the slope was obtained through the FISH function in FLAC. According to the equilibrium conditions, the relationship between the reinforcement force and unbalanced force was derived and accordingly the reinforcement force was determined. The reinforcement design was adopted by using pre-stressed anchor bars on the basis of the reinforcement force. An example is used to show that the effect of slope reinforcement based on the reinforcement force is safe and economical. The method doesn't need to suppose a sliding surface to obtain the reinforcement force, and it is also clear in physical meaning. So this method realized the organic unification of the stability analysis and the slope reinforcement.
文摘纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的GFRP筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应变,研究大直径喷砂GFRP锚杆在框架梁锚固条件下的受力破坏机制。研究表明,本试验大直径25 mm GFRP锚杆在拉拔力、平均黏结强度方面均达到相同直径螺纹钢筋锚杆的设计指标,最合理的框架梁厚度为30~40 cm;瞬时荷载循环对GFRP锚杆界面黏结状态无明显影响;持续荷载作用下杆体界面的黏结状态会发生蜕化,随时间延续蜕化向深部扩展,荷载越大扩展深度越大,蜕化速度越快;光纤光栅监测技术是发现和观察锚杆界面黏结状态蜕化过程的有效手段。