期刊文献+
共找到62,633篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental,Numerical,and Analytical Studies on the Bending of Mechanically Lined Pipe
1
作者 WEI Wen-bin YUAN Lin +1 位作者 ZHOU Jia-sheng LIU Zheng 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期221-232,共12页
Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau... Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results. 展开更多
关键词 lined pipe BENDING nonlinear ring theory BUCKLING PLASTICITY
下载PDF
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
2
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
下载PDF
A Composite Transformer-Based Multi-Stage Defect Detection Architecture for Sewer Pipes
3
作者 Zifeng Yu Xianfeng Li +2 位作者 Lianpeng Sun Jinjun Zhu Jianxin Lin 《Computers, Materials & Continua》 SCIE EI 2024年第1期435-451,共17页
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ... Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities. 展开更多
关键词 Sewer pipe defect detection deep learning model optimization composite transformer
下载PDF
Parametric resonance of axially functionally graded pipes conveying pulsating fluid
4
作者 Jie JING Xiaoye MAO +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期239-260,共22页
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio... Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid. 展开更多
关键词 pipe conveying fluid axially functionally graded supercritical resonance multi-scale method parametric resonance
下载PDF
A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes(RTPs)Under External Pressure Considering Progressive Failure
5
作者 DING Xin-dong WANG Shu-qing +1 位作者 LIU Wen-cheng YE Xiao-han 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期233-246,共14页
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ... The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed. 展开更多
关键词 reinforced thermoplastic pipes post-buckling behavior progressive failure of composites DEBONDING initial ovality
下载PDF
Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test
6
作者 Wu Houli Guo Endong +2 位作者 Wang Jingyi Dai Xin Dai Chenxi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期163-178,共16页
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal... As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes. 展开更多
关键词 water supply pipe different materials shaking table test amplification factor seismic fragility
下载PDF
Detection of internal crack growth in polyethylene pipe using guided wave ultrasonic testing
7
作者 Jay Kumar Shah Hao Wang Said El-Hawwat 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期319-329,共11页
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve... Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth. 展开更多
关键词 polyethylene pipes internal cracks guided wave ultrasonic testing torsional modes finite element modeling
下载PDF
Predicting impact forces on pipelines from deep-sea fluidized slides:A comprehensive review of key factors
8
作者 Xingsen Guo Ning Fan +5 位作者 Defeng Zheng Cuiwei Fu Hao Wu Yanjun Zhang Xiaolong Song Tingkai Nian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期211-225,共15页
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ... Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures. 展开更多
关键词 Deep-sea fluidized slides pipes Impact forces Shear behavior of slides Interface contact conditions Spatial relation
下载PDF
Longitudinal vibration characteristics of a tapered pipe pile considering the vertical support of surrounding soil and construction disturbance
9
作者 Li Zhenya Pan Yunchao +2 位作者 He Xianbin Lv Chong Mohammad Towhid 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期51-63,共13页
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f... This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile. 展开更多
关键词 tapered pipe pile longitudinal vibration vertical support of the surrounding soil construction disturbance displacement impedance
下载PDF
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
10
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
下载PDF
Effect of casting process on the inner-wall band segregation of high-strength antisulfur pipes
11
作者 LUO Ming ZHANG Zhonghua 《Baosteel Technical Research》 CAS 2024年第1期27-36,共10页
Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic s... Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic stirring,end electromagnetic stirring,casting speed and soft reduction)for the smelting of high-strength antisulfur pipes.The microstructures of continuous-casting billets and hot-rolled or tempered pipes were analyzed using a metallographic microscope and scanning electron microscope.The mechanism and evolution law regarding the inner-wall band segregation of high-strength antisulfur pipes were studied,and the influence of different casting processes was explored. 展开更多
关键词 high strength antisulfur pipe casting process spot segregation band segregation
下载PDF
Analysis of Municipal Water Supply and Drainage Pipe Design Technology
12
作者 Liang Liu 《Journal of Architectural Research and Development》 2024年第3期69-74,共6页
The quality and safety of residents’water rely heavily on the design of municipal water supply and drainage pipes.Therefore,this paper aims to enhance the optimization of municipal water supply and drainage pipe desi... The quality and safety of residents’water rely heavily on the design of municipal water supply and drainage pipes.Therefore,this paper aims to enhance the optimization of municipal water supply and drainage pipe design by focusing on design requirements,principles,and key elements.Drawing from relevant design optimization experiences,technology advancements,and optimization measures,the research will analyze and consolidate the essential aspects of municipal water supply and drainage pipe design.The goal is to fundamentally elevate the quality standards of these designs,ensuring they meet the criteria for engineering project excellence.Through this comprehensive approach,we aim to contribute to the improvement and sustainability of water supply and drainage systems,safeguarding the well-being of residents. 展开更多
关键词 Municipal water supply and drainage pipe layout RAINWATER SEWAGE Design technology
下载PDF
Selection of Water Transmission Method and Analysis of Pipe Network Zoning in Municipal Water Supply and Drainage Design
13
作者 Liang Liu 《Journal of World Architecture》 2024年第2期56-61,共6页
With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply... With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work. 展开更多
关键词 Municipal water supply and drainage design Water transmission method pipe network zoning maintenance
下载PDF
Flexural Property of String Beam of Pre-Stressed Glulam Based on Influence of Regulation and Control 被引量:1
14
作者 Nan Guo Wenbo Wang Hongliang Zuo 《Structural Durability & Health Monitoring》 EI 2019年第2期143-179,共37页
Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined... Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined members,materials of high strength can’t be fully utilized.Therefore,this study puts forward the idea of regulating and controlling string beam of pre-stressed glulam.By regulating and controlling the pre-stress,a part of the load borne by the wood is allocated to the pre-stressed tendon,which is equivalent to completing a redistribution of internal force,thus realizing the repeated utilization of the wood strength and the full utilization of the strength of the high-strength pre-stressed tendon.The bending experiments of 10 beams under 5 working conditions are carried out.The failure mode,bearing capacity and deformation of the beams are analyzed.The results show that 90%of beams are deformed under compression.The ultimate load of the regulated and controlled beam is obviously larger than that of the unregulated beam,and the ultimate load of the beam increases with the increase of the degree of regulation and control.Compared with that of the unregulated beams,the ultimate load of beams regulated by 7.5%-30%increases by 25.42%-65.08%,and the regulated and controlled effect is obvious.With the increase of the regulation and control amplitude of pre-stress,the stiffness of string beam of pre-stressed glulam increases.In addition,with the increase of the regulation and control amplitude,the compression height of the beam increases before the failure,and it reaches the state of full-section compression at the time of failure,giving full play to the compressive property of the glulam.At the end of the experiment,the constitutive relation which can reflect the anisotropy of the wood is established combined with the experimental data.The finite element analysis of the beam under 7 working conditions is carried out by using ABAQUS finite element program,and the influence of the regulation and control amplitude on the stress distribution and ultimate bearing capacity of the beam is discussed. 展开更多
关键词 STRING BEAM of GLULAM FLEXURAL PROPERTY experimental study pre-stress regulation and control
下载PDF
Pre-Stressed Rope Reinforced Anti-Sliding Pile 被引量:1
15
作者 XU Jun WANG Chenghua 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期887-891,共5页
Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performan... Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti- sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic. 展开更多
关键词 pre-stressed rope anti-sliding pile composite anti-sliding structure
下载PDF
Dynamic analysis of double-layer and pre-stressed multi-limb six-axis force sensor 被引量:1
16
作者 王志军 He Jing +1 位作者 Cui Bingyan Li Zhanxian 《High Technology Letters》 EI CAS 2019年第2期189-196,共8页
In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sen... In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sensor which is installed on the end-effectors of intelligent robots will have influence on the veracity of detection and judgment to working environment contact force by intelligent robots directly. In this paper, dynamic analysis to double-layer and pre-stressed multi-limb six-axis force sensor is conducted. First, the structure of the sensor is introduced, and the limb number is confirmed by introducing the related definitions of convex analysis. Then, based on vibration of multiple-degree-of-freedom system, a mechanical vibration simplified model of double-layer and pre-stressed multiple limb six-axis force sensor is set up. After that, movement differential equations of sensor and the response of analytical expression are deduced, and the movement differential equations is solved. Finally, taking the double-layer and pre-stressed seven limb six-axis force sensor as an example, numerical calculation and simulation of deriving result is conducted, which verify the correctness and feasibility of the theoretical analysis. 展开更多
关键词 six-axis FORCE sensor multi-limb pre-stressed mechanical vibration dynamic analysis
下载PDF
Design and Preparation of High Elastic Modulus Self-compacting Concrete for Pre-stressed Mass Concrete Structures 被引量:1
17
作者 祝雯 CHEN Yang +4 位作者 LI Fangxian ZHANG Tongsheng HU Jie 韦江雄 YU Qijun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期563-573,共11页
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s... Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d. 展开更多
关键词 self-compacting concrete pre-stressed mass structure high elastic modulus adiabatic temperature rise drying shrinkage
下载PDF
Experimental study on seismic behavior of circular RC columns strengthened with pre-stressed FRP strips 被引量:1
18
作者 Zhou Changdong Lu Xilin +1 位作者 Li Hui Tian Teng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期625-642,共18页
Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hy... Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved. 展开更多
关键词 experimental study circular reinforced concrete column pre-stress fiber reinforced polymer axial loadratio seismic behavior active confinement
下载PDF
Adjacent mode resonance of a hydraulic pipe system consisting of parallel pipes coupled at middle points 被引量:1
19
作者 Xin FAN Changan ZHU +1 位作者 Xiaoye MAO Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期363-380,共18页
The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi... The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system. 展开更多
关键词 hydraulic pipe system coupling vibration adjacent mode coupling parallel pipe conveying fluid harmonic balance method(HBM)
下载PDF
Erosion wear at the bend of pipe during tailings slurry transportation:Numerical study considering inlet velocity,particle size and bend angle 被引量:1
20
作者 Qiusong Chen Hailong Zhou +3 位作者 Yunmin Wang Daolin Wang Qinli Zhang Yikai Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1608-1620,共13页
Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry.Erosion wear(EW)remains the main ca... Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry.Erosion wear(EW)remains the main cause of failure in tailings slurry pipeline systems,particularly at bends.EW is a complex phenomenon influenced by numerous factors,but research in this area has been limited.This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model.Based on the validation of the feasibility of the model,this work focuses on the effects of coupled inlet velocity(IV)ranging from 1.5 to 3.0 m·s^(-1),particle size(PS)ranging from 50 to 650μm,and bend angle(BA)ranging from 45°to 90°on EW at the bend in terms of particle kinetic energy and incidence angle.The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60°within these parameter ranges.Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS>IV>BA,and when IV is 3.0 m/s,PS is 650μm,and BA is 60°,the bend EW is the most severe,and the maximum EW rate is 5.68×10^(-6)kg·m^(-2)·s^(-1).In addition,When PS is below or equal to 450μm,the maximum EW position is mainly at the outlet of the bend.When PS is greater than 450μm,the maximum EW position shifts toward the center of the bend with the increase in BA.Therefore,EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles. 展开更多
关键词 tailings transportation erosion wear pipe wear CFD numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部