For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is dif...For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.展开更多
The paper presents the principles of a method, which in two simple stages makes possible to carry out the statically calculation of values of forces acting in the fiat static indeterminate trusses. In each stage, it i...The paper presents the principles of a method, which in two simple stages makes possible to carry out the statically calculation of values of forces acting in the fiat static indeterminate trusses. In each stage, it is considered the static determinate truss, scheme of which is obtained after remove the suitable number of members from the basic static indeterminate truss. The both intermediate statically determinate trusses are of the same clear span and they are loaded by forces of half values applied to the corresponding truss nodes. The method applies one of the typical procedures of calculation of the statically determinate trusses and then it is applied in an appropriate way the rule of superposition for obtaining the final values of forces acting in particular members of the basic truss. The values of forces calculated in this way are of a very close approximation to the force values determined in the special and complex ways being considered as the exact calculation methods. The proposed method can be useful mostly but not only for the initial structural design of such systems. The simplicity of the two-stage method justifies an assumption that it can be relatively easy and worthy to adjust to the requirements of the computer aided technology of statically calculation of the complex forms of trusses.展开更多
Based on the character of the internal force distribution of the statically indeterminate truss, the elements stresses were changed by adjusting the length of bars to increase load capacity of structure. The efficienc...Based on the character of the internal force distribution of the statically indeterminate truss, the elements stresses were changed by adjusting the length of bars to increase load capacity of structure. The efficiency of the method is illustrated by several examples.展开更多
The paper presents results of calculations of forces in members of selected types of statically indeterminate trusses carriedout by application of the two-stage method of computations of such structural systems. The m...The paper presents results of calculations of forces in members of selected types of statically indeterminate trusses carriedout by application of the two-stage method of computations of such structural systems. The method makes possible to do the simple andapproximate calculations of the complex trusses in two stages, in each of which is calculated a statically determinate truss being anappropriate counterpart of the basic form of the statically indeterminate truss structure. Systems of the statically determinate trussesconsidered in the both stages are defined by cancelation of members, number of which is equal to the statically indeterminacy of thebasic truss. In the paper are presented outcomes obtained in the two-stage method applied for two different shapes of trusses and carriedout for various ways of removing of appropriate members from the basic trusses. The results are compared with outcomes gained due toapplication of suitable computer software for computation of the same types of trusses and for the same structural conditions.展开更多
This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granit...This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.展开更多
Statically indeterminate symmetric(SIS)flexure structures are symmetric structures with“clamped-clamped”boundary conditions.The static indeterminacy and topological symmetry significantly attenuate the parasitic mot...Statically indeterminate symmetric(SIS)flexure structures are symmetric structures with“clamped-clamped”boundary conditions.The static indeterminacy and topological symmetry significantly attenuate the parasitic motions associated with statically determinate flexure structures.Hence,SIS flexure structures feature decoupled linear and angular motions,improved motion accuracy,high stiffness,and high stability.Although SIS flexure structures have been more frequently utilized as prismatic joints,they can also be utilized as revolute joints.This study systematically investigates the characteristics of SIS flexure structures.Based on the unified compliance models of a single flexure hinge,analytical compliance models of two fundamental types of SIS flexure structures are established.In 1-degree-of-freedom or planar applications,multiple SIS-based structures can also be integrated into various configurations to transmit linear or angular motions.Corresponding stiffness models are also established.The characteristics and possible applications of the SIS flexure structures are computationally investigated through case studies.Ultimately,several SIS prototypes are manufactured,and the modeling accuracy of the established stiffness models is experimentally verified.展开更多
The development of a theoretical model to predict the four equilibrium forces of reaction on a simple ladder of non-adjustable length leaning against a wall has long remained an unresolved matter. The difficulty is th...The development of a theoretical model to predict the four equilibrium forces of reaction on a simple ladder of non-adjustable length leaning against a wall has long remained an unresolved matter. The difficulty is that the problem is statically indeterminate and therefore requires complementary information to obtain a unique solution. This paper reports 1) a comprehensive theoretical analysis of the three fundamental models based on treating the ladder as a single Euler-Bernoulli beam, and 2) a detailed experimental investigation of the forces of reaction as a function of applied load and location of load. In contrast to previous untested proposals that the solution to the ladder problem lay in the axial constraint on compression or the transverse constraint on flexure, the experimental outcome of the present work showed unambiguously that 1) the ladder could be modeled the best by a pinned support at the base (on the ground) and a roller support at the top (at the wall), and 2) the only complementary relation needed to resolve the static indeterminacy is the force of friction at the wall. Measurements were also made on the impact loading of a ladder by rapid ascent and descent of a climber. The results obtained were consistent with a simple dynamical model of the ladder as a linear elastic medium subject to a pulse perturbation. The solution to the ladder problem herein presented provides a basis for theoretical extension to other types of ladders. Of particular importance, given that accidents involving ladders in the workplace comprise a significant fraction of all industrial accidents, the theoretical relations reported here can help determine whether a collapsed structure, against which a ladder was applied, met regulatory safety limits or not.展开更多
In a recent publication the author derived and experimentally tested several theoretical models, distinguished by different boundary conditions at the contacts with horizontal and vertical supports, that predicted the...In a recent publication the author derived and experimentally tested several theoretical models, distinguished by different boundary conditions at the contacts with horizontal and vertical supports, that predicted the forces of reaction on a fixed (i.e. inextensible) ladder. This problem is statically indeterminate since there are 4 forces of reaction and only 3 equations of static equilibrium. The model that predicted the empirical reactions correctly used a law of static friction to complement the equations of static equilibrium. The present paper examines in greater theoretical and experimental detail the role of friction in accounting for the forces of reaction on a fixed ladder. The reported measurements confirm that forces parallel and normal to the support at the top of the ladder are linearly proportional with a constant coefficient of friction irrespective of the magnitude or location of the load, as assumed in the theoretical model. However, measurements of forces parallel and normal to the support at the base of the ladder are linearly proportional with coefficients that depend sensitively on the location (although not the magnitude) of the load. This paper accounts quantitatively for the different effects of friction at the top and base of the ladder under conditions of usual use whereby friction at the vertical support alone is insufficient to keep the ladder from sliding. A theoretical model is also proposed for the unusual circumstance in which friction at the vertical support can keep the ladder from sliding.展开更多
The paper presents general description of combined structural system and initial analysis of an innovative system proposed as the main support structure for tall or heavy loaded buildings located on subsoil of very sm...The paper presents general description of combined structural system and initial analysis of an innovative system proposed as the main support structure for tall or heavy loaded buildings located on subsoil of very small load-carrying ability or in earthquake areas. Moreover there is presented also an innovative two-stage method of the approximate calculation of the statically indeterminate trusses. Both are invented by the author by application of the principles of the superposition method.展开更多
In this study,ultrahigh-performance fiber-reinforced concrete(UHPFRC)used in a type B70 concrete sleeper is investigated experimentally and parametrically.The main parameters investigated are the steel fiber volume fr...In this study,ultrahigh-performance fiber-reinforced concrete(UHPFRC)used in a type B70 concrete sleeper is investigated experimentally and parametrically.The main parameters investigated are the steel fiber volume fractions(0%,0.5%,1%,and 1.5%).Under European standards,35 UHPFRC sleepers are subjected to static bending tests at the center and rail seat sections,and the screw on the fastening system is pulled out.The first cracking load,failure load,failure mode,crack propagation,load–deflection curve,load–crack width,and failure load from these tests are measured and compared with those of a control sleeper manufactured using normal concrete C50.The accuracy of the parametric study is verified experimentally.Subsequently,the results of the study are applied to UHPFRC sleepers with different concrete volumes to investigate the effects of the properties of UHPFRC on their performance.Experimental and parametric study results show that the behavior of UHPFRC sleepers improves significantly when the amount of steel fiber in the mix is increased.Sleepers manufactured using UHPFRC with a steel fiber volume fraction of 1%and a concrete volume less than 25%that of standard sleeper B70 can be used under the same loads and requirements,which contributes positively to the cost and surrounding environment.展开更多
文摘For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.
文摘The paper presents the principles of a method, which in two simple stages makes possible to carry out the statically calculation of values of forces acting in the fiat static indeterminate trusses. In each stage, it is considered the static determinate truss, scheme of which is obtained after remove the suitable number of members from the basic static indeterminate truss. The both intermediate statically determinate trusses are of the same clear span and they are loaded by forces of half values applied to the corresponding truss nodes. The method applies one of the typical procedures of calculation of the statically determinate trusses and then it is applied in an appropriate way the rule of superposition for obtaining the final values of forces acting in particular members of the basic truss. The values of forces calculated in this way are of a very close approximation to the force values determined in the special and complex ways being considered as the exact calculation methods. The proposed method can be useful mostly but not only for the initial structural design of such systems. The simplicity of the two-stage method justifies an assumption that it can be relatively easy and worthy to adjust to the requirements of the computer aided technology of statically calculation of the complex forms of trusses.
文摘Based on the character of the internal force distribution of the statically indeterminate truss, the elements stresses were changed by adjusting the length of bars to increase load capacity of structure. The efficiency of the method is illustrated by several examples.
文摘The paper presents results of calculations of forces in members of selected types of statically indeterminate trusses carriedout by application of the two-stage method of computations of such structural systems. The method makes possible to do the simple andapproximate calculations of the complex trusses in two stages, in each of which is calculated a statically determinate truss being anappropriate counterpart of the basic form of the statically indeterminate truss structure. Systems of the statically determinate trussesconsidered in the both stages are defined by cancelation of members, number of which is equal to the statically indeterminacy of thebasic truss. In the paper are presented outcomes obtained in the two-stage method applied for two different shapes of trusses and carriedout for various ways of removing of appropriate members from the basic trusses. The results are compared with outcomes gained due toapplication of suitable computer software for computation of the same types of trusses and for the same structural conditions.
基金financially supported by the National Natural Science Foundation of China (No.42077244)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (No.Z020005)the Fundamental Research Funds for the Central Universities of Southeast University,China (No.2242021R10080)。
文摘This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.
基金funded by the National Natural Science Foundation of China under Grants 61873133,and 52005270in part by the Natural Science Foundation of Tianjin under Grant 21JCZDJC00090.
文摘Statically indeterminate symmetric(SIS)flexure structures are symmetric structures with“clamped-clamped”boundary conditions.The static indeterminacy and topological symmetry significantly attenuate the parasitic motions associated with statically determinate flexure structures.Hence,SIS flexure structures feature decoupled linear and angular motions,improved motion accuracy,high stiffness,and high stability.Although SIS flexure structures have been more frequently utilized as prismatic joints,they can also be utilized as revolute joints.This study systematically investigates the characteristics of SIS flexure structures.Based on the unified compliance models of a single flexure hinge,analytical compliance models of two fundamental types of SIS flexure structures are established.In 1-degree-of-freedom or planar applications,multiple SIS-based structures can also be integrated into various configurations to transmit linear or angular motions.Corresponding stiffness models are also established.The characteristics and possible applications of the SIS flexure structures are computationally investigated through case studies.Ultimately,several SIS prototypes are manufactured,and the modeling accuracy of the established stiffness models is experimentally verified.
文摘The development of a theoretical model to predict the four equilibrium forces of reaction on a simple ladder of non-adjustable length leaning against a wall has long remained an unresolved matter. The difficulty is that the problem is statically indeterminate and therefore requires complementary information to obtain a unique solution. This paper reports 1) a comprehensive theoretical analysis of the three fundamental models based on treating the ladder as a single Euler-Bernoulli beam, and 2) a detailed experimental investigation of the forces of reaction as a function of applied load and location of load. In contrast to previous untested proposals that the solution to the ladder problem lay in the axial constraint on compression or the transverse constraint on flexure, the experimental outcome of the present work showed unambiguously that 1) the ladder could be modeled the best by a pinned support at the base (on the ground) and a roller support at the top (at the wall), and 2) the only complementary relation needed to resolve the static indeterminacy is the force of friction at the wall. Measurements were also made on the impact loading of a ladder by rapid ascent and descent of a climber. The results obtained were consistent with a simple dynamical model of the ladder as a linear elastic medium subject to a pulse perturbation. The solution to the ladder problem herein presented provides a basis for theoretical extension to other types of ladders. Of particular importance, given that accidents involving ladders in the workplace comprise a significant fraction of all industrial accidents, the theoretical relations reported here can help determine whether a collapsed structure, against which a ladder was applied, met regulatory safety limits or not.
文摘In a recent publication the author derived and experimentally tested several theoretical models, distinguished by different boundary conditions at the contacts with horizontal and vertical supports, that predicted the forces of reaction on a fixed (i.e. inextensible) ladder. This problem is statically indeterminate since there are 4 forces of reaction and only 3 equations of static equilibrium. The model that predicted the empirical reactions correctly used a law of static friction to complement the equations of static equilibrium. The present paper examines in greater theoretical and experimental detail the role of friction in accounting for the forces of reaction on a fixed ladder. The reported measurements confirm that forces parallel and normal to the support at the top of the ladder are linearly proportional with a constant coefficient of friction irrespective of the magnitude or location of the load, as assumed in the theoretical model. However, measurements of forces parallel and normal to the support at the base of the ladder are linearly proportional with coefficients that depend sensitively on the location (although not the magnitude) of the load. This paper accounts quantitatively for the different effects of friction at the top and base of the ladder under conditions of usual use whereby friction at the vertical support alone is insufficient to keep the ladder from sliding. A theoretical model is also proposed for the unusual circumstance in which friction at the vertical support can keep the ladder from sliding.
文摘The paper presents general description of combined structural system and initial analysis of an innovative system proposed as the main support structure for tall or heavy loaded buildings located on subsoil of very small load-carrying ability or in earthquake areas. Moreover there is presented also an innovative two-stage method of the approximate calculation of the statically indeterminate trusses. Both are invented by the author by application of the principles of the superposition method.
文摘In this study,ultrahigh-performance fiber-reinforced concrete(UHPFRC)used in a type B70 concrete sleeper is investigated experimentally and parametrically.The main parameters investigated are the steel fiber volume fractions(0%,0.5%,1%,and 1.5%).Under European standards,35 UHPFRC sleepers are subjected to static bending tests at the center and rail seat sections,and the screw on the fastening system is pulled out.The first cracking load,failure load,failure mode,crack propagation,load–deflection curve,load–crack width,and failure load from these tests are measured and compared with those of a control sleeper manufactured using normal concrete C50.The accuracy of the parametric study is verified experimentally.Subsequently,the results of the study are applied to UHPFRC sleepers with different concrete volumes to investigate the effects of the properties of UHPFRC on their performance.Experimental and parametric study results show that the behavior of UHPFRC sleepers improves significantly when the amount of steel fiber in the mix is increased.Sleepers manufactured using UHPFRC with a steel fiber volume fraction of 1%and a concrete volume less than 25%that of standard sleeper B70 can be used under the same loads and requirements,which contributes positively to the cost and surrounding environment.