Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes...Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes due to temperature shift making the prestress measurement of steel strands inaccurate and even sometimes impossible.In the course of solving the problem,this paper reports on quantitative research on the temperature dependence of ultrasonic longitudinal guided wave propagation in long range steel strands.In order to achieve the generation and reception of a chosen longitudinal mode in a steel strand with a helical shaped surface,a new type of magnetostrictive transducer was developed,characterized by a group of thin clips and three identical permanent magnets.Excitation and reception of ultrasonic guided waves in a steel strand were performed experimentally.Experimental results shows that in the temperature range from-4 ℃ to 34 ℃,the propagation velocity of the L(0,1) mode at 160 kHz linearly decreased with increasing temperature and its temperature dependent coefficient was 0.90(m·s-1 ·(℃)-1) which is very close to the theoretical prediction.The effect of dimension deviation between the helical and center wires and the effect of the thermal expansion of the steel strand on ultrasonic longitudinal guided wave propagation were also analyzed.It was found that these effects could be ignored compared with the change in the material mechanical properties of the steel strands due to temperature shift.It was also observed that the longitudinal guided wave mode was somewhat more sensitive to temperature changes compared with conventional ultrasonic waves theoretically.Therefore,it is considered that the temperature effect on ultrasonic longitudinal guided wave propagation in order to improve the accuracy of stress measurement in prestressed steel strands.Quantitative research on the temperature dependence of ultrasonic guided wave propagation in steel strands provides an important basis for the compensation of temperature effects in stress measurement in steel strands by using ultrasonic guided wave inspection.展开更多
Propagation characteristics of high order longitudinal modes of ultrasonic guided waves in seven-wire steel strands are investigated theoretically and experimentally. According to these analysis results, proper longit...Propagation characteristics of high order longitudinal modes of ultrasonic guided waves in seven-wire steel strands are investigated theoretically and experimentally. According to these analysis results, proper longitudinal modes are selected for defect detection in steel strands. Dispersion curves for helical and central wires in a 17.80 mm nominal diameter seven-wire steel strand are numerically obtained firstly, and propagation characteristics of high-order longitudinal modes, such as wave structures, attenuation and dispersion, are analyzed. In experiments, the signals of ultrasonic guided wave at different high frequencies are excited and received at one end of a steel strand by using the same single piezoelectric transducer. The identification of longitudinal modes in the received signals is achieved based on short time Fourier transform. Furthermore, appropriate L(0, 5) mode at 2.54 MHz is chosen for detecting an artificial defect in a helical wire of the steel strand. Results show that high order longitudinal modes in a high frequency range with low dispersion and attenuation whose energy propagates mainly in the center of the wires can be used for defect detection in long range steel strands.展开更多
To study the bonding properties between steel strand and concrete at room and cryogenic temperatures, a series of center pullout experiments were conducted on 96 bonding anchorage specimens at the lowest temperature o...To study the bonding properties between steel strand and concrete at room and cryogenic temperatures, a series of center pullout experiments were conducted on 96 bonding anchorage specimens at the lowest temperature of-165 ℃. The impacts on the bonding property of such parameters as the temperature, concrete strength, the relative concrete cover thickness, and the relative anchorage length were analyzed. The test results indicate that the changes in temperature have a clear effect on the bonding property between steel strand and concrete. As the temperature decreases, the bond stress, which corresponds to a 1 mm slip of steel strand in relation to concrete, and the ultimate bond strength initially increase and subsequently decrease at the inflection point of-80 ℃. The impact of the concrete strength on the bonding property, as shown by the tensile strength and the moisture content interaction, indicates that the bond stress vs concrete strength curve initially increases and later decreases with a decrease in temperature; the bond stress vs concrete cover thickness curve linearly increases, but the bond stress vs anchorage length curve linearly decreases at first and finally levels off.展开更多
Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage...Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage evolution to acoustic emission parameters was proposed by incorporating the AE rate process theory. The AE monitoring results indicate that damages occur in both elastic and plastic phases of steel strand. In elastic phase, AE signals are mainly sent out from the micro damage due to the surface friction among the wires of steel strand, while in plastic phase, AE signals emitted from the plastic deformation of wires. In addition, the AE cumulative parameters curves closely resemble the loading curve. The AE cumulative parameters curves can well describe the damage evolution process including the damage occurrence and damage development for steel strands. It is concluded that the AE technique is an effective and useful nondestructive technique for evaluating the damage characteristics of steel strand.展开更多
Corrosion of steel structures is unavoidable and the structural performance decreases dramatically due to the corrosion. As a repairing method for corroded steel members, bonding carbon fiber sheets with resin had bee...Corrosion of steel structures is unavoidable and the structural performance decreases dramatically due to the corrosion. As a repairing method for corroded steel members, bonding carbon fiber sheets with resin had been developed. The purpose of this study is to propose the flexural strengthening method for steel members by using CFRP (carbon fiber reinforced polymer) strand sheets. In order to clarify the stiffening effect and the debonding characteristics of CFRP strand sheets, and to optimize the strengthening design specifications, the flexural tests using high tension steel beams strengthened with CFRP strand sheets are performed. Two cases of experiments are carried out. In Experiment 1, the result from previous research is reflected in the strengthening design. Moreover in Experiment 2, the debonding characteristics obtained from Experiment 1 are reflected. As a result, it was clarified that CFRP strand sheets have stiffening effect equivalent to the theoretical value and its debonding property is practically high enough when FRP (fiber reinforcement polymer) sheets have an appropriate bonding length.展开更多
This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands.To verify the effectiveness of external prestressed strand reinforcement method.Stati...This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands.To verify the effectiveness of external prestressed strand reinforcement method.Static load tests and health monitoring-based assessment were carried out before and after reinforcement.Field load test shows that the deflection and stress values of the main girder are reduced by 10%~20%after reinforcement,and the flexural strength and stiffness of the strengthened beam are improved.The deflection and strain data of health monitoring of the specified section are collected.The deflection of the second span is 4 mm~10 mm,the strain range of the upper edge of the second span is-10με~-40με,and the strain range of the lower edge is 30με~75με.These values show the deflection and strain values fluctuate within a prescribed range,verifying the safety of the bridge.The reinforcement method of prestressed steel strand is feasible and effective.It can provide reference basis for the application of external prestressed strand reinforcement technology in similar projects.展开更多
A three-dimensional contact model of 1×7 steel strand was established. Contact point was searched by Splitting-pinball algorithm, and Augmented-Lagrangian algorithm was applied for analysis of contact loads. The ...A three-dimensional contact model of 1×7 steel strand was established. Contact point was searched by Splitting-pinball algorithm, and Augmented-Lagrangian algorithm was applied for analysis of contact loads. The exerted tensile loads to the model were analyzed using finite element method. After analyzing calculation results, the laws of steel wire stress distribution in axis direction and in its cross-section were found. Friction coefficients were set as 0.10, 0.11, and 0.12, respec- tively, to obtain the influence law of friction coefficient to steel wire stresses. Research result shows that friction coefficient has significant influence on the shear stress of steel wire. Analyzed the calculation results of steel strand with five different lay pitch multiples and got the influence law of lay pitch multiple to the stresses of steel wire in steel strand. The Von Misses stress of steel wire increases following with the increasing of lay pitches nmltiples, but the increment value is not very prominent. The shear stress of steel wire decreases following the increase of lay pitch multiple, and the changing amplitude is large when lay pitch multiple is small. Finally, carried out a steel strand tensile deformation test and the consistency of test results with the calculation results shows that the selected model is reasonable.展开更多
A twisted fiber optic sensor based on intensity modulation is described. The principle and structure of the sensor and the choice of steel strand modules are introduced. The sensor is used to determine the tensile str...A twisted fiber optic sensor based on intensity modulation is described. The principle and structure of the sensor and the choice of steel strand modules are introduced. The sensor is used to determine the tensile strain and distribution. The experimental results show that the change of the transferring light power has an approximate linear relation with the outer force. The intelligent steel strands with this kind of sensor will have a good application in monitoring the concrete crack and deformation distribution in huge structures such as dams and bridges.展开更多
The steel structure is corroded by various mechanisms, and thus its performance decreases. As a repairing method of the corroded steel member, a method in which carbon fiber sheets is bonded to the steel member with g...The steel structure is corroded by various mechanisms, and thus its performance decreases. As a repairing method of the corroded steel member, a method in which carbon fiber sheets is bonded to the steel member with glue has been studied. In recent years, as more efficient repairing method using FRP materials, the strand sheet bonding which has high mass per unit area has been developed. The purpose of this study is to propose the repairing method for corroded steel member by using the strand sheets. In order to confirm a reinforcing effect, the tensile and flexural tests using steel plates and girders reinforced with strand sheets were performed. Test results showed effectiveness of strand sheets for the reinforcement of the steel members.展开更多
Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing unde...Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing under vertical loading,the critical factors deciding the initial pretention value were found.According to these factors,a rule for the initial pretension value was put forward.The determination equations were acquired based on the principle of force equilibrium at nodes.The numerical results indicate that the internal force disequilibrium in composite bracings resulted from symmetrical load can be eliminated only in a symmetrical way,so that initial pretention values are decided only by vertical loads.The influencing coefficient leveling method,taking into account interactions between story and story,is accurate and feasible.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10602004,Grant No. 50975006)Beijing Municipal Natural Science Foundation of China (Grant No. 2072003)+1 种基金Beijing Municipal Talent Developing Project of China (Grant No.20081B0501500173)Beijing Municipal Nova Program of China(Grant No. 2008A015)
文摘Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes due to temperature shift making the prestress measurement of steel strands inaccurate and even sometimes impossible.In the course of solving the problem,this paper reports on quantitative research on the temperature dependence of ultrasonic longitudinal guided wave propagation in long range steel strands.In order to achieve the generation and reception of a chosen longitudinal mode in a steel strand with a helical shaped surface,a new type of magnetostrictive transducer was developed,characterized by a group of thin clips and three identical permanent magnets.Excitation and reception of ultrasonic guided waves in a steel strand were performed experimentally.Experimental results shows that in the temperature range from-4 ℃ to 34 ℃,the propagation velocity of the L(0,1) mode at 160 kHz linearly decreased with increasing temperature and its temperature dependent coefficient was 0.90(m·s-1 ·(℃)-1) which is very close to the theoretical prediction.The effect of dimension deviation between the helical and center wires and the effect of the thermal expansion of the steel strand on ultrasonic longitudinal guided wave propagation were also analyzed.It was found that these effects could be ignored compared with the change in the material mechanical properties of the steel strands due to temperature shift.It was also observed that the longitudinal guided wave mode was somewhat more sensitive to temperature changes compared with conventional ultrasonic waves theoretically.Therefore,it is considered that the temperature effect on ultrasonic longitudinal guided wave propagation in order to improve the accuracy of stress measurement in prestressed steel strands.Quantitative research on the temperature dependence of ultrasonic guided wave propagation in steel strands provides an important basis for the compensation of temperature effects in stress measurement in steel strands by using ultrasonic guided wave inspection.
基金supported by the National Natural Science Foundation of China(No.10602004)Beijing Natural Science Foundation(No.2072003)Beijing Talent Developing Project(No.20081B0501500173).
文摘Propagation characteristics of high order longitudinal modes of ultrasonic guided waves in seven-wire steel strands are investigated theoretically and experimentally. According to these analysis results, proper longitudinal modes are selected for defect detection in steel strands. Dispersion curves for helical and central wires in a 17.80 mm nominal diameter seven-wire steel strand are numerically obtained firstly, and propagation characteristics of high-order longitudinal modes, such as wave structures, attenuation and dispersion, are analyzed. In experiments, the signals of ultrasonic guided wave at different high frequencies are excited and received at one end of a steel strand by using the same single piezoelectric transducer. The identification of longitudinal modes in the received signals is achieved based on short time Fourier transform. Furthermore, appropriate L(0, 5) mode at 2.54 MHz is chosen for detecting an artificial defect in a helical wire of the steel strand. Results show that high order longitudinal modes in a high frequency range with low dispersion and attenuation whose energy propagates mainly in the center of the wires can be used for defect detection in long range steel strands.
基金Supported by the National Natural Science Foundation of China(No.51078260 and No.51478309)
文摘To study the bonding properties between steel strand and concrete at room and cryogenic temperatures, a series of center pullout experiments were conducted on 96 bonding anchorage specimens at the lowest temperature of-165 ℃. The impacts on the bonding property of such parameters as the temperature, concrete strength, the relative concrete cover thickness, and the relative anchorage length were analyzed. The test results indicate that the changes in temperature have a clear effect on the bonding property between steel strand and concrete. As the temperature decreases, the bond stress, which corresponds to a 1 mm slip of steel strand in relation to concrete, and the ultimate bond strength initially increase and subsequently decrease at the inflection point of-80 ℃. The impact of the concrete strength on the bonding property, as shown by the tensile strength and the moisture content interaction, indicates that the bond stress vs concrete strength curve initially increases and later decreases with a decrease in temperature; the bond stress vs concrete cover thickness curve linearly increases, but the bond stress vs anchorage length curve linearly decreases at first and finally levels off.
基金Projects(51308073,51378081)supported by the National Natural Science Foundation of ChinaProject(20124316120002)supported by PhD Programs Foundation of Ministry of Education of China+1 种基金Project(12KB02)supported by the Key Laboratory for Safety Control of Bridge Engineering of Ministry of Education of ChinaProject(14JJ3087)supported by the Science Foundation of Hunan Province,China
文摘Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage evolution to acoustic emission parameters was proposed by incorporating the AE rate process theory. The AE monitoring results indicate that damages occur in both elastic and plastic phases of steel strand. In elastic phase, AE signals are mainly sent out from the micro damage due to the surface friction among the wires of steel strand, while in plastic phase, AE signals emitted from the plastic deformation of wires. In addition, the AE cumulative parameters curves closely resemble the loading curve. The AE cumulative parameters curves can well describe the damage evolution process including the damage occurrence and damage development for steel strands. It is concluded that the AE technique is an effective and useful nondestructive technique for evaluating the damage characteristics of steel strand.
文摘Corrosion of steel structures is unavoidable and the structural performance decreases dramatically due to the corrosion. As a repairing method for corroded steel members, bonding carbon fiber sheets with resin had been developed. The purpose of this study is to propose the flexural strengthening method for steel members by using CFRP (carbon fiber reinforced polymer) strand sheets. In order to clarify the stiffening effect and the debonding characteristics of CFRP strand sheets, and to optimize the strengthening design specifications, the flexural tests using high tension steel beams strengthened with CFRP strand sheets are performed. Two cases of experiments are carried out. In Experiment 1, the result from previous research is reflected in the strengthening design. Moreover in Experiment 2, the debonding characteristics obtained from Experiment 1 are reflected. As a result, it was clarified that CFRP strand sheets have stiffening effect equivalent to the theoretical value and its debonding property is practically high enough when FRP (fiber reinforcement polymer) sheets have an appropriate bonding length.
文摘This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands.To verify the effectiveness of external prestressed strand reinforcement method.Static load tests and health monitoring-based assessment were carried out before and after reinforcement.Field load test shows that the deflection and stress values of the main girder are reduced by 10%~20%after reinforcement,and the flexural strength and stiffness of the strengthened beam are improved.The deflection and strain data of health monitoring of the specified section are collected.The deflection of the second span is 4 mm~10 mm,the strain range of the upper edge of the second span is-10με~-40με,and the strain range of the lower edge is 30με~75με.These values show the deflection and strain values fluctuate within a prescribed range,verifying the safety of the bridge.The reinforcement method of prestressed steel strand is feasible and effective.It can provide reference basis for the application of external prestressed strand reinforcement technology in similar projects.
文摘A three-dimensional contact model of 1×7 steel strand was established. Contact point was searched by Splitting-pinball algorithm, and Augmented-Lagrangian algorithm was applied for analysis of contact loads. The exerted tensile loads to the model were analyzed using finite element method. After analyzing calculation results, the laws of steel wire stress distribution in axis direction and in its cross-section were found. Friction coefficients were set as 0.10, 0.11, and 0.12, respec- tively, to obtain the influence law of friction coefficient to steel wire stresses. Research result shows that friction coefficient has significant influence on the shear stress of steel wire. Analyzed the calculation results of steel strand with five different lay pitch multiples and got the influence law of lay pitch multiple to the stresses of steel wire in steel strand. The Von Misses stress of steel wire increases following with the increasing of lay pitches nmltiples, but the increment value is not very prominent. The shear stress of steel wire decreases following the increase of lay pitch multiple, and the changing amplitude is large when lay pitch multiple is small. Finally, carried out a steel strand tensile deformation test and the consistency of test results with the calculation results shows that the selected model is reasonable.
文摘A twisted fiber optic sensor based on intensity modulation is described. The principle and structure of the sensor and the choice of steel strand modules are introduced. The sensor is used to determine the tensile strain and distribution. The experimental results show that the change of the transferring light power has an approximate linear relation with the outer force. The intelligent steel strands with this kind of sensor will have a good application in monitoring the concrete crack and deformation distribution in huge structures such as dams and bridges.
文摘The steel structure is corroded by various mechanisms, and thus its performance decreases. As a repairing method of the corroded steel member, a method in which carbon fiber sheets is bonded to the steel member with glue has been studied. In recent years, as more efficient repairing method using FRP materials, the strand sheet bonding which has high mass per unit area has been developed. The purpose of this study is to propose the repairing method for corroded steel member by using the strand sheets. In order to confirm a reinforcing effect, the tensile and flexural tests using steel plates and girders reinforced with strand sheets were performed. Test results showed effectiveness of strand sheets for the reinforcement of the steel members.
基金Project of Ministry of Housing and Urban-Rural Development of China(No.2012-K2-28)
文摘Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing under vertical loading,the critical factors deciding the initial pretention value were found.According to these factors,a rule for the initial pretension value was put forward.The determination equations were acquired based on the principle of force equilibrium at nodes.The numerical results indicate that the internal force disequilibrium in composite bracings resulted from symmetrical load can be eliminated only in a symmetrical way,so that initial pretention values are decided only by vertical loads.The influencing coefficient leveling method,taking into account interactions between story and story,is accurate and feasible.