期刊文献+
共找到3,460篇文章
< 1 2 173 >
每页显示 20 50 100
Excavation compensation and bolt support for a deep mine drift
1
作者 Longji Guo Zhigang Tao +1 位作者 Manchao He Massimo Coli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3206-3220,共15页
To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 13... To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry. 展开更多
关键词 Deep phosphate rock NPR bolt Split-set rock bolt PFC3D-FLAC3D Compensation support
下载PDF
Effect of pre-tensioned rock bolts on stress redistribution around a roadway—insight from numerical modeling 被引量:12
2
作者 GAO Fu-qiang KANG Hong-pu 《Journal of China University of Mining and Technology》 EI 2008年第4期509-515,共7页
The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical a... The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical analysis was carried out using FLAC3D and a special post-process methodology, using surfer, is proposed to process the numerical simulation results. The results indicate that pre-tensioned rock bolts have a significant effect on stress redistribution around a roadway. In the roof, pre-tensioned rock bolts greatly increase vertical stress; as a result, the strength of the rock mass increased significantly which results in a greater capacity of bearing a large horizontal stress. The horizontal stress decreases in the upper section of the roof, indicating that pre-tensioned rock bolts significantly reduce the coefficient and the size of the region concentration of horizontal stress. At the lat- eral side, pre-tensioned rock bolts greatly increase the horizontal stress; therefore, the rock mass strength significantly increases which results also in a greater capacity of bearing a large vertical stress. The greater the size of pre-tensioned force, the larger the region of stress redistribution around a roadway is affected and the higher the size of the stress on the roadway surface the more the rock mass strength increases. 展开更多
关键词 pre-tensioned rock bolts stress redistribution numerical simulation
下载PDF
Anchorage performance of large-diameter FRP bolts and their application in large deformation roadway 被引量:1
3
作者 Jun Han Zuoqing Bi +2 位作者 Bing Liang Chen Cao Shuangwen Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1037-1043,共7页
In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP... In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP bolts used in shallow underground mining cannot fulfil the rib support requirements. Under the engineering background of deep underground shortwall mining in Wudong coal mine, this paper systematically studies Φ27 mm FRP bolt support for large deformation coal rib. Specimens with a fan-shaped cross-section were used to enable the tensile testing of the bolt rod, the measured average tensile strength of the studied FRP bolt was(486.1 ± 9.6) MPa with a maximum elongation of 5.7%±0.6%.The shear strength of the bolt was measured as approximately 258 MPa using a self-made double shear testing apparatus. Based on the equivalent radial stiffness principle, a laboratory short encapsulation pullout test(SEPT) method for rib bolting has been developed undertaken consideration of the mechanical properties of the coal seam. Results showed that the average peak anchorage forces of the Φ27 mm FRP bolt and Φ20 mm steel rebar bolt were 108.4 and 66.4 k N, respectively, which were agreed with the theoretical calculations and field measurements. Based on theoretical analysis of the loading states of the bolt under site conditions, bolting method of full-length resin grouting was adopted to offset the weaknesses of the FRP bolt. Numerical method was employed to compare the bolting effect using Φ27 mm FRP bolts and steel rebar bolts. Large diameter FRP bolting was determined as the optimum rib support scheme to increase the productivity of the coal mine and to enhance the ground control capability for+425 level mining roadways. This study provides the laboratory testing design and theoretical prediction of large diameter FRP bolts used for rib support in large deformation roadways. 展开更多
关键词 FRP bolt Laboratory SEPT Tensile strength Double shear testing Mined rib support Large deformation roadway
下载PDF
Mechanical properties and supporting effect of CRLD bolts under static pull test conditions 被引量:9
4
作者 Xiao-ming Sun Yong Zhang +3 位作者 Dong Wang Jun Yang Hui-chen Xu Man-chao He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第1期1-9,共9页
A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large d... A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt. 展开更多
关键词 deep mining bolts mechanical properties rock support static pull test
下载PDF
Mechanism and technology study of collaborative support with long and short bolts in large-deformation roadways 被引量:5
5
作者 Yu Hui Niu Zhiyong +2 位作者 Kong Linggen Hao Caicheng Cao Peng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期587-593,共7页
Common short bolts of equal length are widely used to support the roofs of roadways in coal mines.However, they are insufficient to keep the roof stable against large deformations, so docking long bolts with high leve... Common short bolts of equal length are widely used to support the roofs of roadways in coal mines.However, they are insufficient to keep the roof stable against large deformations, so docking long bolts with high levels of elongation that can adapt to large deformations of the surrounding rock have been adopted. This paper proposes a collaborative support method that uses long and short bolts. In this study,the mechanism of docking long bolts and collaborative support was studied. Numerical simulation, similarity simulation, and field testing were used to analyze the distribution law of the displacement, stress,and plastic failure in the surrounding rock under different support schemes. Compared with the equal-length short bolt support, the collaborative support changed the maximum principal stress of the shallow roof from tensile stress to compressive stress, and the minimum principal stress of the roof significantly increased. The stress concentration degree of the anchorage zone clearly increased. The deformation of the roof and the two sides was greatly reduced, and the subsidence shape of the shallow roof changed from serrated to a smooth curve. The roof integrity was enhanced, and the roof moved down as a whole. Plastic failure significantly decreased, and the plastic zone of the roof was within the anchorage range. The similarity simulation results showed that, under the maximum mining stress,the roof collapsed with the equal-length short bolt support but remained stable with the collaborative support. The collaborative support method was successfully applied in the field and clearly improved the stability of the surrounding rock for a large deformation roadway. 展开更多
关键词 Collaborative support with long and shortbolt Docking long bolt Numerical analysis Similarity simulation
下载PDF
Research on Bolt Support Technology in Soft Coal Seam Roadway
6
作者 Xinyuan Ma Wenzhong Zhou +2 位作者 Shuai Zhao Mingxuan Jiang Zihao Yu 《World Journal of Engineering and Technology》 2023年第2期370-380,共11页
In order to solve the problem of surrounding rock control in soft coal seam roadway, taking the centralized return airway of No. 2 coal seam in Liangdu Coal Industry as the research background, the mechanical con... In order to solve the problem of surrounding rock control in soft coal seam roadway, taking the centralized return airway of No. 2 coal seam in Liangdu Coal Industry as the research background, the mechanical conditions of roadway surrounding rock were analyzed by means of field investigation, rock mechanics experiment and numerical simulation. The design principles of roadway support in soft coal seam were put forward: high strength anchor cable support, high preload support and high stiffness support. The bearing capacity of surrounding rock was strengthened by anchor cable support, and the deformation and failure of surrounding rock were effectively controlled. Through the numerical simulation method, the deformation and plastic failure range of roadwaysunder different support schemes are compared and analyzed. The support scheme of centralized transportation roadway is studied and determined, and the field test is carried out, which effectively controls the deformation of surrounding rock of roadway in weak coal seam. 展开更多
关键词 Roadway support High Preload High Strength bolt support support Design
下载PDF
Non-destructive testing and pre-warning analysis on the quality of bolt support in deep roadways of mining districts 被引量:13
7
作者 Zhang Houquan Miao Xiexing +2 位作者 Zhang Guimin Wu Yu Chen Yanlong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期989-998,共10页
The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non... The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non-destructive detection and pre-warning analysis on the quality of bolt support in deep roadways of mining districts were performed in a number of mining areas. The measured data were obtained in the detection instances of abnormal in-situ stress and support invalidation etc. The corresponding relation between axial bolt load variation and roadway surrounding rock deformation and stability was summarized in different mining service stages. Pre-warning technology of roadway surrounding rock stability is proposed based on the detection of axial bolt load. Meanwhile, pre-warning indicators of axial bolt load in different mining service stages are offered and some successful pre-warning cases are also illustrated.The research results show that the change rules of axial bolt load in different mining service stages are quite similar in different mining areas. The change of axial bolt load is in accord with the adjustment of surrounding rock stress, which can consequently reflect the deformation and stability state of roadway surrounding rock. Through the detection of axial bolt load in different sections of roadways, the status of real-time bolt support quality can be reflected; meanwhile, the rationality of bolt support design can be evaluated which provides reference for bolting parameters optimization. 展开更多
关键词 Deep roadways bolt support QUALITY RANDOM NONDESTRUCTIVE testing SURROUNDING ROCK stability Prediction and pre-warning
下载PDF
Numerical and analytical simulation of the structural behaviour of fully grouted cable bolts under impulsive loading 被引量:10
8
作者 Faham Tahmasebinia Chengguo Zhang +2 位作者 Ismet Canbulat Onur Vardar Serkan Saydam 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期807-811,共5页
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination ... Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models. 展开更多
关键词 CABLE bolts YIELDING support Coal BURST SHEAR dynamic loading
下载PDF
Stress evolution and support mechanism of a bolt anchored in a rock mass with a weak interlayer 被引量:12
9
作者 Ding Shuxue Jing Hongwen +2 位作者 Chen Kunfu Xu Guo'an Meng Bo 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期573-580,共8页
By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instr... By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instrumented five pairs of symmetrical strain gauges. The experimental results show that the fully grouted bolt suffers tensile, compressive, bending and shear stress at the same time. The bolt stress evolution is closely related to the deformation stages of the rock mass which are very gradually varying stage, gradually varying stage at the pre-peak and suddenly varying stage at the post peak stage.The axial compressive stress in the bolt is mainly induced by the moment. Thus, in most cases the axial compressive stress is distributed on one side of the bolt. For axial stresses, induced by the axial force and the bending moment at the post-peak stage, three types of changing are observed, viz. increasingincreasing type, decreasing-increasing type and increasing-decreasing type. The stress characteristics of the bolt section in the weak interlayer are significantly different from those in the hard rock. The failure models of the anchored bolt are tensile failure and shear failure, respectively. The bolt not only provides constraints on the free surface of the rock mass, but also resists the axial and lateral loading by the bending moment. This study provides valuable guidelines for bolting support design and its safety assessment. 展开更多
关键词 Fully grouted bolt Stress evolution support mechanism Weak interlayer Deformation process
下载PDF
Double-directional control bolt support technology and engineering application at large span Y-type intersections in deep coal mines 被引量:13
10
作者 GUO, Zhibiao SHI, Jianjun +2 位作者 WANG, Jiong CAI, Feng WANG, Fuqiang 《Mining Science and Technology》 EI CAS 2010年第2期254-259,共6页
Under deep and complex geological conditions,severe deformation occurs at intersection points of Y-type roadways with large cross sections during engineering projects in coal mines,especially at junction arches.Based ... Under deep and complex geological conditions,severe deformation occurs at intersection points of Y-type roadways with large cross sections during engineering projects in coal mines,especially at junction arches.Based on in-situ investigations and theoretical studies,we have summarized typical forms of destruction and identified high stress and unrestricted support at both sides of junction arch as its main causes.In this study,we also presented double-directional control bolt support technology for a large Y-type span intersection,applied to deep intersection engineering in the Jiahe Coal Mine,which has proved effective. 展开更多
关键词 Y-type intersection double-directional control bolt support deep coal mines
下载PDF
Failure mechanism of bolting support and high-strength bolt-grouting technology for deep and soft surrounding rock with high stress 被引量:16
11
作者 李术才 王洪涛 +5 位作者 王琦 江贝 王富奇 郭念波 刘文江 任尧喜 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期440-448,共9页
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i... In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines. 展开更多
关键词 high stress soft rock bolting support interface dilation failure mechanism high strength bolt-grouting technology
下载PDF
Loading characteristics of mechanical rib bolts determined through testing and numerical modeling 被引量:5
12
作者 Khaled Mohamed Gamal Rashed Zorica Radakovic-Guzina 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期17-24,共8页
Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance o... Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance of the mechanical bolts in coal ribs.Researchers from the National Institute for Occupational Safety and Health(NIOSH)conducted this work to understand the loading characteristics of mechanical bolts(stiffness and capacity)installed in coal ribs at five underground coal mines.Standard pull-out tests were performed in this study to define the loading characteristics of mechanical rib bolts.Different installation torques were applied to the tested bolts based on the strength of the coal seam.A typical tri-linear load-deformation response for mechanical bolts was obtained from these tests.It was found that the anchorage capacity depended mainly on the coal strength.Guidelines for modeling mechanical bolts have been developed using the tri-linear load-deformation response.The outcome of this research provides essential data for rib support design. 展开更多
关键词 Coal RIB MECHANICAL bolt Conventional bolt Tension bolt Point-anchored bolt RIB support PULL-OUT test Numerical modeling FLAC3D
下载PDF
Similarity simulation of bolt support in a coal roadway in a tectonic stress field 被引量:6
13
作者 LU Yan LIU Changyou 《Mining Science and Technology》 EI CAS 2010年第5期718-722,共5页
In order to study the mechanism of bolt support and the behavior of strata in a coal roadway under tectonic stress,deformation and destruction of a roof,floor and sides were studied using an experiment in similarity s... In order to study the mechanism of bolt support and the behavior of strata in a coal roadway under tectonic stress,deformation and destruction of a roof,floor and sides were studied using an experiment in similarity simulation.We also studied the mechanism and types of bolt support functions in the coal roadway.The results show that with an increase in horizontal tectonic stress,the strata in the roof and floor of the roadway gradually separate and become shear failure areas.Coal in side walls moves,but its integrity remains intact.Side bolts are mainly affected by tension and roof bolts by the effect of shear. 展开更多
关键词 tectonic stress coal roadway bolt support similarity simulation
下载PDF
Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control 被引量:20
14
作者 Chang Qingliang Zhou Huaqiang +1 位作者 Xie Zhihong Shen Shiping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期323-328,共6页
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre... Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway. 展开更多
关键词 Hydraulic expansion bolt Anchoring force Soft rock roadway Floor heave Shed support
下载PDF
Bolt support mechanism based on elastic theory 被引量:9
15
作者 Guo Xiaoqian Mao Xianbiao +1 位作者 Ma Chao Huang Jinglong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期468-473,共6页
Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the inter... Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the interior of a semi-infnite solid were obtained by means of classical displacement function method in elasticity.The factors which influence stress of bolted surrounding rock,such as the length of bolt and tray effect,were analyzed.The absolute value of stress along bolt axes decreased rapidly with an increase in radical distance and the maximum appeared near ends of bolt.With increasing radical distance,the value of radical stress changed from positive to negative roughly and then increased to zero,with maximum at the middle of bolt.The evolution of hoop stress as radical distance increasing was similar with stress along bolt axes.With an increase in depth,the radical effect ranges of all normal stress components were reduced.These suggest that the effect from tray on stress along bolt axes of bolted surrounding rock could be neglected,except near surface of surrounding rock. 展开更多
关键词 Elastic theory bolt support Displacement function method Stress along bolt axes
下载PDF
Parameter analysis of anchor bolt support for large-span and jointed rock mass 被引量:5
16
作者 李夕兵 周子龙 +1 位作者 李启月 胡柳青 《Journal of Central South University of Technology》 EI 2005年第4期483-487,共5页
In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This pa... In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This paper describes a numerical modeling with discrete element method for the supporting effects of different type of anchor bolts. The anchor bolts with variant length of 0.5m, 0.8m, 1.0m, diameter of 10mm, 15mm, 20mm, setting spacing of 3.0m, 2.5m, 2.0m, and setting angle of 10°, 20°, 30°, are simulated respectively. The results show that there exist optimal parameters of anchor bolt support for large-span and jointed rock mass. For the bolt support of the concerning, the optimal length is 2.53.5m, the diameter is 2535mm, the spacing is 0.50.6m, and the setting angle is 105°. 展开更多
关键词 jointed rock mass anchor bolt support optimal parameter
下载PDF
A robust approach to identify roof bolts in 3D point cloud data captured from a mobile laser scanner 被引量:3
17
作者 Sarvesh Kumar Singh Simit Raval Bikram Banerjee 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期303-312,共10页
Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in undergr... Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in underground environments.This study proposes a robust workflow to classify roof bolts in 3 D point cloud data and to generate maps of roof bolt density and spacing.The workflow was evaluated for identifying roof bolts in an underground coal mine with suboptimal lighting and global navigation satellite system(GNSS)signals not available.The approach is based on supervised classification using the multi-scale Canupo classifier coupled with a random sample consensus(RANSAC)shape detection algorithm to provide robust roof bolt identification.The issue of sparseness in point cloud data has been addressed through upsampling by using a moving least squares method.The accuracy of roof bolt identification was measured by correct identification of roof bolts(true positives),unidentified roof bolts(false negatives),and falsely identified roof bolts(false positives)using correctness,completeness,and quality metrics.The proposed workflow achieved correct identification of 89.27%of the roof bolts present in the test area.However,considering the false positives and false negatives,the overall quality metric was reduced to 78.54%. 展开更多
关键词 Mobile laser scanning Roof bolts support system planning Roof monitoring Change detection Underground roadways
下载PDF
Study on Repairing Permanent Transportation Roadway in Deep Mining by Bolt-Shotcrete and Mesh Supporting 被引量:10
18
作者 宋宏伟 鹿守敏 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期167-171,共5页
The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production... The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production performance and safety. Based on analysis of supporting objects for roadway repairing, this paper proposes the supporting parameters and condruction technics. The industrial ted of 70m long roadway repairing shows that the proposed parameters and technics of bolt shotcrete and mesh support for roadway repairing are reasouable, bring good technical and economic results for the colliery, and the repairing is successful. 展开更多
关键词 ROADWAY repairing soft ROCK support bolt-shotcrete supportING broken ROCK zone
下载PDF
Reliability analysis on bolt support structure of coal roadway under the influence of mining 被引量:4
19
作者 Zhang Daobing Luo Yixin Zhu Chuanqu 《Engineering Sciences》 EI 2008年第3期64-68,84,共6页
Based on the features of the serious deformation of coal roadway,many random variables of the mechanics of the surrounding rocks and the influence of mining, the reliability analysis model of the support structure of ... Based on the features of the serious deformation of coal roadway,many random variables of the mechanics of the surrounding rocks and the influence of mining, the reliability analysis model of the support structure of coal roadway under the influence of mining is established,and the calculating formulas of reliability of the support structure is obtained with the engineering structure reliability theory. And the reliability is calculated based on the method of Monte Carlo to the coal roadway which is exampled on the influence of mining or not. The relationship between support parameters and reliability, the mining influence coefficients and reliability is established, which provides theory foundations for the design of the coal roadway bolt support. 展开更多
关键词 coal roadway influence of mining bolt support structure reliability the method of Monte Carlo
下载PDF
Numerical simulation of creep characteristics of soft roadway with bolt-grouting support 被引量:4
20
作者 王连国 李海亮 张健 《Journal of Central South University》 SCIE EI CAS 2008年第S1期391-396,共6页
Based on the engineering background of a soft rock roadway in Qinan Coal Mine 82 Area,Huaibei Mining Group,three creep models with different support patterns in soft rock roadway were established by using geotechnical... Based on the engineering background of a soft rock roadway in Qinan Coal Mine 82 Area,Huaibei Mining Group,three creep models with different support patterns in soft rock roadway were established by using geotechnical software of FLAC2D.According to the calculation results of different models,the change law of mechanical properties with the time of bolt-grouting support structure was obtained.Furthermore,for the test bolt-grouting support roadway,the deformation law of surrounding rock got by underground industrial experiment and field observation accords with the creep law got by numerical calculation.The results of numerical calculation and field observation show that,compared with other supports,the creep of bolt-grouting support roadway enters the steady-state creep stage from tertiary creep stage ahead,the deformations of roof,floor and two sides are decreased greatly,the plastically deforming area in surrounding rock is reduced obviously,and the distribution ranges of maximum and minimum principal stress are shrank obviously.All those fully show that the bolt-grouting support has its remarkable advantages in controlling surrounding rock creep and improving the whole strength of surrounding rock and self-bearing capacity. 展开更多
关键词 SOFT ROCK bolt-GROUTING support CREEP NUMERICAL simulation engineering practice
下载PDF
上一页 1 2 173 下一页 到第
使用帮助 返回顶部