Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ...Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.展开更多
The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthqu...The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthquake, resulting in too high repair costs or having to dismantle and rebuild. In order to improve and enhance the anti-seismic performance of the RC framework structure, energy consumption devices are added between the frame columns to achieve the effect of reducing the RC frame structure damage and improving the seismic performance of the RC frame structure. In this article, high-performance fiber-enhanced cement base composite materials fabricated energy consumption walls are prepared in the RC frame structure to form a new type of seismic structure system of RC frame-prefabricated HPFRCC energy consumption wall. This article uses the power timing analysis of the ABAQUS finite element software to study the anti-seismic performance, influencing factors and energy consumption distribution of the RC frame-prefabricated HPFRCC energy wall structural system.展开更多
The assembly coastal building technique initiated at home and abroad,is for a novel vertical standing harbor structure.Its main concept is the assembling components which can be combined and locked together to form a ...The assembly coastal building technique initiated at home and abroad,is for a novel vertical standing harbor structure.Its main concept is the assembling components which can be combined and locked together to form a large caisson.Its application and future are discussed for a building.After many years of application and tests,the technique has a high stability,a wide range of application,low workload and fast construction speed.It can be widely applied in future for harbor engineering projects.展开更多
Models for the design of assembly processes are considered. Various models for the voice control of an industrial robot are considered: a logical model, semantic networks, a frame model and Petri nets. It is shown tha...Models for the design of assembly processes are considered. Various models for the voice control of an industrial robot are considered: a logical model, semantic networks, a frame model and Petri nets. It is shown that this set of models allows describing the process of designing the technological process for an industrial robot. The logical model of the technological process allows you to define logical relationships. A model based on semantic networks describes the relationship between assembly units in a detail. This allows you to determine the order and method of registration, as well as the mutual orientation of assembly units in the product. The frame model provides the ability to streamline the execution of the build process. A model based on Petri nets allows one to describe the type and sequence of technological transitions. Based on the proposed models, a method of voice control for an industrial robot is developed. The basic principles of voice control for an industrial robot are considered.展开更多
基金supported by Foundation of Henan Educational Committee(20A560004,J.Z.)Foundation of Henan Science and Technology Project(182102311086,Y.W.)Foundation for University Key Teacher(YCJQNGGJS201901,J.Z.,YCJXSJSDTR201801,Y.W.,Henan University of Urban Construction).
文摘Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.
文摘The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthquake, resulting in too high repair costs or having to dismantle and rebuild. In order to improve and enhance the anti-seismic performance of the RC framework structure, energy consumption devices are added between the frame columns to achieve the effect of reducing the RC frame structure damage and improving the seismic performance of the RC frame structure. In this article, high-performance fiber-enhanced cement base composite materials fabricated energy consumption walls are prepared in the RC frame structure to form a new type of seismic structure system of RC frame-prefabricated HPFRCC energy consumption wall. This article uses the power timing analysis of the ABAQUS finite element software to study the anti-seismic performance, influencing factors and energy consumption distribution of the RC frame-prefabricated HPFRCC energy wall structural system.
基金supported by the National Natural Science Foundation of China(Grant No.50639010)the "Blue Project" of Jiangsu Province
文摘The assembly coastal building technique initiated at home and abroad,is for a novel vertical standing harbor structure.Its main concept is the assembling components which can be combined and locked together to form a large caisson.Its application and future are discussed for a building.After many years of application and tests,the technique has a high stability,a wide range of application,low workload and fast construction speed.It can be widely applied in future for harbor engineering projects.
文摘Models for the design of assembly processes are considered. Various models for the voice control of an industrial robot are considered: a logical model, semantic networks, a frame model and Petri nets. It is shown that this set of models allows describing the process of designing the technological process for an industrial robot. The logical model of the technological process allows you to define logical relationships. A model based on semantic networks describes the relationship between assembly units in a detail. This allows you to determine the order and method of registration, as well as the mutual orientation of assembly units in the product. The frame model provides the ability to streamline the execution of the build process. A model based on Petri nets allows one to describe the type and sequence of technological transitions. Based on the proposed models, a method of voice control for an industrial robot is developed. The basic principles of voice control for an industrial robot are considered.