A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms o...A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms of their low damage and rapid recovery.The framework integrates various uncertainties in the seismic hazard,fragility,capacity,demand,loss functions,and post-earthquake recovery.In this study,the PCF structures are distinguished from ordinary reinforced concrete frame(RCF)structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms.Accordingly,probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states.In the seismic resilience analysis,a step-wise recovery model is proposed to idealize the functionality recovery process,with separate considerations of the repair and non-repair events.The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation.As such,contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented.The proposed framework is demonstrated through a comparative study between two“dry”connected PCFs and one RCF designed as alternative structural systems for a prototype building.The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF.Particularly,the PCF equipped with energy dissipation devices at the“dry”connections largely reduces the expected economic loss,downtime,and resilience loss by 29%,56%,and 60%,respectively,compared to the RCF.展开更多
Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test re...Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.展开更多
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s...Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.展开更多
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures...The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints o fiBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.展开更多
In recent years, precast segmental concrete bridge columns became prevalent because of the benefits of accelerated construction, low environmental impact, high quality and low life cycle costs. The lack of a detailed ...In recent years, precast segmental concrete bridge columns became prevalent because of the benefits of accelerated construction, low environmental impact, high quality and low life cycle costs. The lack of a detailed configuration and appropriate design procedure to ensure a comparable performance with monolithic construction has impeded this structural system from being widely used in areas of high seismicity. In this study, precast segmental bridge column cyclic loading tests were conducted to investigate the performance of unbonded post-tensioned segmental bridge columns. One monolithic and two precast segmental columns were tested. The preeast segmental column exhibited minor damage and small residual displacement after the maximum 7% cyclic drift; energy dissipation (ED) can be enhanced byadding ED bars. The experimental results were modeled by a simplified pushover method (SPOM), as well as a fiber model (FIBM) finite element method. Forty-five cases of columns with different aspect ratios, axial load ratios and ED bar ratios were analyzed with the SPOM and FIBM, respectively. Using these parametric results, a simplified design method was suggested by regressive analysis. Satisfactory correlation was found between the experimental results and the simplified design method for preeast segmental columns with different design parameters.展开更多
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/...An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.展开更多
This study proposes an innovative precast shear wall system, called an EVE precast hollow shear wall structure (EVE-PHSW). Precast panels in EVE-PHSW are simultaneously precast with vertical and horizontal holes. Nonc...This study proposes an innovative precast shear wall system, called an EVE precast hollow shear wall structure (EVE-PHSW). Precast panels in EVE-PHSW are simultaneously precast with vertical and horizontal holes. Noncontact lap splices of rebars are used in vertical joints connecting adjacent precast panels for automated prefabrication and easy in situ erection. The seismic behavior of EVE walls was examined through a series of tests on six wall specimens with aspect ratios of 1.0~1.3. Test results showed that EVE wall specimens with inside cast-in situ concrete achieved the desired “strong bending and weak shear” and failed in shear mode. Common main diagonal cracks and brittle shear failure in squat cast-in situ walls were prevented. Inside cast-in situ concrete could signifi cantly improve the shear strength and stiff ness of EVE walls. The details of boundary elements (cast-in situ or prefabricated) and vertical joints (contiguous or spaced) had little eff ect on the global behavior of EVE walls. Noncontact lap splices in vertical joints could enable EVE walls to exhibit stable load-carrying capacity through extensive deformations. Evaluation on design codes revealed that both JGJ 3-2010 and ACI 318-14 provide conservative estimation of shear strength of EVE walls, and EVE walls achieved shear strength reserves comparative to cast-in situ walls. The recommended eff ective stiff ness for cast-in situ walls in ASCE 41-17 appeared to be appropriate for EVE walls.展开更多
A simplified full-depth precast concrete deck panel system for accelerating bridge construction (ABC) is introduced and a finite dement analysis (FEA) is con- ducted to investigate the static and dynamic responses...A simplified full-depth precast concrete deck panel system for accelerating bridge construction (ABC) is introduced and a finite dement analysis (FEA) is con- ducted to investigate the static and dynamic responses of this conceptual deck system. The FEA results are compared to those of the traditional full-depth precast concrete deck panel system. The comparison results show that the mechanical behavior of the new deck system is different from that of the traditional deck system. The concrete decks in the new system act as two-way slabs, instead of the one-way slab in the traditional system. Meanwhile, the connections in both the longitudinal and transverse direc- tions may need to accommodate the negative moments. Compared to those in the traditional system, the longitu- dinal nominal stress at middle span increases a lot in the new deck system and the effective flange width varies significantly. In addition, the dynamic results show that the impact factor is influenced by the spacing of connections. Finally, some design concerns of the new deck system are proposed.展开更多
To promote the visualisation and informatisation of the construction process of precast foamed lightweight concrete wallboards(PFLCWs),from the analysis of the construction requirements of PFLCWs,three key constructio...To promote the visualisation and informatisation of the construction process of precast foamed lightweight concrete wallboards(PFLCWs),from the analysis of the construction requirements of PFLCWs,three key construction technologies based on building information modelling(BIM),namely,parameterised modelling for the PFLCW layout design,drawing generation to draw the PFLCW layout and quantity statistics for extracting PFLCW quantities,are proposed.Then,a reinforced concrete(RC)frame infilled with PFLCW is considered the test model to verify the feasibility of the aforementioned technologies.The results show that PFLCW layout design can be accomplished rapidly and visually using parameterised modelling technology.The PFLCW layout diagram can be generated directly using drawing generation technology.The proposed quantity statistics technology enables the automatic export of PFLCW bills of quantities.The built parameterised model helps construction workers rapidly and intuitively understand the specific layout details of PFLCWs.Moreover,the generated layout drawing and the bills of quantities based on the parameterised model can guide the production and on-site installation of PFLCWs.The research conclusions can serve as a practical guide and technical support for PFLCW engineering applications.展开更多
The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and th...The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the lab...An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.展开更多
By heating up the embedded carbon fiber reinforced cement based material (CFRC), the carrying capacity and deformation of concrete member could be adjusted. The relationship between temperature difference and expans...By heating up the embedded carbon fiber reinforced cement based material (CFRC), the carrying capacity and deformation of concrete member could be adjusted. The relationship between temperature difference and expansion strain of CFRC was demonstrated, and the temperature-deformation-load effect of concrete embedded with CFRC was studied. Heating the CFRC up to different temperatures resulted in different degree of inner pre-stress in concrete. Thus, the load capacity of concrete could be regulated owing to counteracting the pre-stress.展开更多
Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hy...Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.展开更多
The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculat...The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculated with two Chinese codes was discussed.Based on the calculations,the pre-camber of a pre-stressed concrete continuous rigid-frame box bridge was computed for construction control purpose.The results show that the short-term creep coefficient and long-term creep coefficient calculated with the CC-1985 are larger than those calculated with the CC-2004,while the medium-term creep coefficient calculated with the CC-1985 is smaller than that calculated with the CC-2004.The difference of creep deformation calculated with these two codes is small,and the influences of concrete creep on the pre-camber for most of the segments are negligible.The deflections and stresses of the box girder measured during the construction stages agree very well with the predictions.展开更多
An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brit...An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brittle during transportation and tension process. This paper presents a new type of anchor bearing plate combined stamping with welding forming. The structure of the new type anchor bearing plate is introduced. The stress states of the anchor bearing plate and anchorage zone under work are studied. Various specifications of anchor bearing plate are studied by ANSYS finite element analysis software following the AASHTO specification. The analysis results are compared with the results of the same type of OVM round-shaped anchor plate. The study results show that the new pre-stressed anchor plates combined stamping with welding forming are feasible and more sturdy which can meet the engineering demand.展开更多
Growing technical problems with the maintenance of precast concrete housing stock result in the search for efficient repair methods. The paper analyses the effects of flaws in the design concept and assembly accuracy ...Growing technical problems with the maintenance of precast concrete housing stock result in the search for efficient repair methods. The paper analyses the effects of flaws in the design concept and assembly accuracy of integrated AAC (autoclaved aerated concrete) panel walls, type GWO (Gazobetonowa Wielka P|yta Ostonowa which means large cover panel from aerated concrete in English), used as curtain walls in a system of precast concrete housing blocks erected in Lublin. The results of in-situ observations and laboratory tests of the panel walls have been described, and the opinion on the further use of these elements has been presented. As for the analysed case, there is no possibility of replacing damaged elements, thus, additional reinforcement with steel tendons has been proposed as a repair measure.展开更多
In this study,ultrahigh-performance fiber-reinforced concrete(UHPFRC)used in a type B70 concrete sleeper is investigated experimentally and parametrically.The main parameters investigated are the steel fiber volume fr...In this study,ultrahigh-performance fiber-reinforced concrete(UHPFRC)used in a type B70 concrete sleeper is investigated experimentally and parametrically.The main parameters investigated are the steel fiber volume fractions(0%,0.5%,1%,and 1.5%).Under European standards,35 UHPFRC sleepers are subjected to static bending tests at the center and rail seat sections,and the screw on the fastening system is pulled out.The first cracking load,failure load,failure mode,crack propagation,load–deflection curve,load–crack width,and failure load from these tests are measured and compared with those of a control sleeper manufactured using normal concrete C50.The accuracy of the parametric study is verified experimentally.Subsequently,the results of the study are applied to UHPFRC sleepers with different concrete volumes to investigate the effects of the properties of UHPFRC on their performance.Experimental and parametric study results show that the behavior of UHPFRC sleepers improves significantly when the amount of steel fiber in the mix is increased.Sleepers manufactured using UHPFRC with a steel fiber volume fraction of 1%and a concrete volume less than 25%that of standard sleeper B70 can be used under the same loads and requirements,which contributes positively to the cost and surrounding environment.展开更多
Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pi...Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.展开更多
This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system work...This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed.展开更多
基金National Key Research and Development Program of China under Grant No.2022YFC3803004Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX20_0031Fundamental Research Funds for the Central Universities under Grant No.3205002108D。
文摘A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms of their low damage and rapid recovery.The framework integrates various uncertainties in the seismic hazard,fragility,capacity,demand,loss functions,and post-earthquake recovery.In this study,the PCF structures are distinguished from ordinary reinforced concrete frame(RCF)structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms.Accordingly,probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states.In the seismic resilience analysis,a step-wise recovery model is proposed to idealize the functionality recovery process,with separate considerations of the repair and non-repair events.The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation.As such,contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented.The proposed framework is demonstrated through a comparative study between two“dry”connected PCFs and one RCF designed as alternative structural systems for a prototype building.The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF.Particularly,the PCF equipped with energy dissipation devices at the“dry”connections largely reduces the expected economic loss,downtime,and resilience loss by 29%,56%,and 60%,respectively,compared to the RCF.
文摘Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.
基金Funded by National Natural Science Foundation of China(Nos.U1134008 and 51302090)the Fundamental Research Funds for the Central Universities(No.2015ZJ0005)
文摘Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.
基金financial support from the Housing Research Center of UPMNAEIM Company
文摘The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints o fiBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.
基金National Natural Science Foundation of China under Grants Nos.51208268 and 51178429K.C.Wong Magna Fund in Ningbo University+1 种基金Transportation Science and Technology Project of Ningbo City under Grant No.201507Natural Science Foundation of Ningbo City under Grant No.2015A610293
文摘In recent years, precast segmental concrete bridge columns became prevalent because of the benefits of accelerated construction, low environmental impact, high quality and low life cycle costs. The lack of a detailed configuration and appropriate design procedure to ensure a comparable performance with monolithic construction has impeded this structural system from being widely used in areas of high seismicity. In this study, precast segmental bridge column cyclic loading tests were conducted to investigate the performance of unbonded post-tensioned segmental bridge columns. One monolithic and two precast segmental columns were tested. The preeast segmental column exhibited minor damage and small residual displacement after the maximum 7% cyclic drift; energy dissipation (ED) can be enhanced byadding ED bars. The experimental results were modeled by a simplified pushover method (SPOM), as well as a fiber model (FIBM) finite element method. Forty-five cases of columns with different aspect ratios, axial load ratios and ED bar ratios were analyzed with the SPOM and FIBM, respectively. Using these parametric results, a simplified design method was suggested by regressive analysis. Satisfactory correlation was found between the experimental results and the simplified design method for preeast segmental columns with different design parameters.
文摘An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.
基金Beijing Everest Green Building Technology Ltd. for the funding
文摘This study proposes an innovative precast shear wall system, called an EVE precast hollow shear wall structure (EVE-PHSW). Precast panels in EVE-PHSW are simultaneously precast with vertical and horizontal holes. Noncontact lap splices of rebars are used in vertical joints connecting adjacent precast panels for automated prefabrication and easy in situ erection. The seismic behavior of EVE walls was examined through a series of tests on six wall specimens with aspect ratios of 1.0~1.3. Test results showed that EVE wall specimens with inside cast-in situ concrete achieved the desired “strong bending and weak shear” and failed in shear mode. Common main diagonal cracks and brittle shear failure in squat cast-in situ walls were prevented. Inside cast-in situ concrete could signifi cantly improve the shear strength and stiff ness of EVE walls. The details of boundary elements (cast-in situ or prefabricated) and vertical joints (contiguous or spaced) had little eff ect on the global behavior of EVE walls. Noncontact lap splices in vertical joints could enable EVE walls to exhibit stable load-carrying capacity through extensive deformations. Evaluation on design codes revealed that both JGJ 3-2010 and ACI 318-14 provide conservative estimation of shear strength of EVE walls, and EVE walls achieved shear strength reserves comparative to cast-in situ walls. The recommended eff ective stiff ness for cast-in situ walls in ASCE 41-17 appeared to be appropriate for EVE walls.
文摘A simplified full-depth precast concrete deck panel system for accelerating bridge construction (ABC) is introduced and a finite dement analysis (FEA) is con- ducted to investigate the static and dynamic responses of this conceptual deck system. The FEA results are compared to those of the traditional full-depth precast concrete deck panel system. The comparison results show that the mechanical behavior of the new deck system is different from that of the traditional deck system. The concrete decks in the new system act as two-way slabs, instead of the one-way slab in the traditional system. Meanwhile, the connections in both the longitudinal and transverse direc- tions may need to accommodate the negative moments. Compared to those in the traditional system, the longitu- dinal nominal stress at middle span increases a lot in the new deck system and the effective flange width varies significantly. In addition, the dynamic results show that the impact factor is influenced by the spacing of connections. Finally, some design concerns of the new deck system are proposed.
基金The National Key Research and Development Program of China(No.2020YFD1100404-4)the National Natural Science Foundation for Young Scientists of China(No.52108120)the National Natural Science Foundation for Young Scientists of Jiangsu Province(No.BK20210258)。
文摘To promote the visualisation and informatisation of the construction process of precast foamed lightweight concrete wallboards(PFLCWs),from the analysis of the construction requirements of PFLCWs,three key construction technologies based on building information modelling(BIM),namely,parameterised modelling for the PFLCW layout design,drawing generation to draw the PFLCW layout and quantity statistics for extracting PFLCW quantities,are proposed.Then,a reinforced concrete(RC)frame infilled with PFLCW is considered the test model to verify the feasibility of the aforementioned technologies.The results show that PFLCW layout design can be accomplished rapidly and visually using parameterised modelling technology.The PFLCW layout diagram can be generated directly using drawing generation technology.The proposed quantity statistics technology enables the automatic export of PFLCW bills of quantities.The built parameterised model helps construction workers rapidly and intuitively understand the specific layout details of PFLCWs.Moreover,the generated layout drawing and the bills of quantities based on the parameterised model can guide the production and on-site installation of PFLCWs.The research conclusions can serve as a practical guide and technical support for PFLCW engineering applications.
基金Project(N2018G034)supported by China Railway Corporation。
文摘The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
基金State Key Research Project in 13th Five-Year under Grant No.2016YFC0701901the Beijing Science and Technology Program under Grant No.Z161100001216015the Natural Science Foundation of China under Grants Nos.51422809 and 51778342
文摘An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.
基金the National Natural Science Foundation of China (No. 50238040).
文摘By heating up the embedded carbon fiber reinforced cement based material (CFRC), the carrying capacity and deformation of concrete member could be adjusted. The relationship between temperature difference and expansion strain of CFRC was demonstrated, and the temperature-deformation-load effect of concrete embedded with CFRC was studied. Heating the CFRC up to different temperatures resulted in different degree of inner pre-stress in concrete. Thus, the load capacity of concrete could be regulated owing to counteracting the pre-stress.
基金National Natural Science Foundation of China under Grant No.51178029 State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University under Grant No.SLDRCE08-MB-01
文摘Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.
基金Project(2008047B) supported by the Funds for Youth of Control South University of Forestry and Technology
文摘The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculated with two Chinese codes was discussed.Based on the calculations,the pre-camber of a pre-stressed concrete continuous rigid-frame box bridge was computed for construction control purpose.The results show that the short-term creep coefficient and long-term creep coefficient calculated with the CC-1985 are larger than those calculated with the CC-2004,while the medium-term creep coefficient calculated with the CC-1985 is smaller than that calculated with the CC-2004.The difference of creep deformation calculated with these two codes is small,and the influences of concrete creep on the pre-camber for most of the segments are negligible.The deflections and stresses of the box girder measured during the construction stages agree very well with the predictions.
文摘An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brittle during transportation and tension process. This paper presents a new type of anchor bearing plate combined stamping with welding forming. The structure of the new type anchor bearing plate is introduced. The stress states of the anchor bearing plate and anchorage zone under work are studied. Various specifications of anchor bearing plate are studied by ANSYS finite element analysis software following the AASHTO specification. The analysis results are compared with the results of the same type of OVM round-shaped anchor plate. The study results show that the new pre-stressed anchor plates combined stamping with welding forming are feasible and more sturdy which can meet the engineering demand.
文摘Growing technical problems with the maintenance of precast concrete housing stock result in the search for efficient repair methods. The paper analyses the effects of flaws in the design concept and assembly accuracy of integrated AAC (autoclaved aerated concrete) panel walls, type GWO (Gazobetonowa Wielka P|yta Ostonowa which means large cover panel from aerated concrete in English), used as curtain walls in a system of precast concrete housing blocks erected in Lublin. The results of in-situ observations and laboratory tests of the panel walls have been described, and the opinion on the further use of these elements has been presented. As for the analysed case, there is no possibility of replacing damaged elements, thus, additional reinforcement with steel tendons has been proposed as a repair measure.
文摘In this study,ultrahigh-performance fiber-reinforced concrete(UHPFRC)used in a type B70 concrete sleeper is investigated experimentally and parametrically.The main parameters investigated are the steel fiber volume fractions(0%,0.5%,1%,and 1.5%).Under European standards,35 UHPFRC sleepers are subjected to static bending tests at the center and rail seat sections,and the screw on the fastening system is pulled out.The first cracking load,failure load,failure mode,crack propagation,load–deflection curve,load–crack width,and failure load from these tests are measured and compared with those of a control sleeper manufactured using normal concrete C50.The accuracy of the parametric study is verified experimentally.Subsequently,the results of the study are applied to UHPFRC sleepers with different concrete volumes to investigate the effects of the properties of UHPFRC on their performance.Experimental and parametric study results show that the behavior of UHPFRC sleepers improves significantly when the amount of steel fiber in the mix is increased.Sleepers manufactured using UHPFRC with a steel fiber volume fraction of 1%and a concrete volume less than 25%that of standard sleeper B70 can be used under the same loads and requirements,which contributes positively to the cost and surrounding environment.
基金National Natural Science Foundation of China under Grant Nos.51978656 and 51478459the Key Research and Development Project of Xuzhou under Grant No.KC22282the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Civil Engineering,China University of Mining and Technology under Grant No.KFJJ202004。
文摘Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.
文摘This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed.