The separation of manganese from sulfate solutions containing 14.59 g/L Mn2+, 1.89 g/L Mg2+ and 1.54 g/L Ca2+ was preformed successfully by carbonate precipitation. The results of thermodynamic analysis and tests indi...The separation of manganese from sulfate solutions containing 14.59 g/L Mn2+, 1.89 g/L Mg2+ and 1.54 g/L Ca2+ was preformed successfully by carbonate precipitation. The results of thermodynamic analysis and tests indicate that carbonate precipitation holds better selectivity for manganese over magnesium than hydroxide precipitation and the feeding method is the most critical factor for minimizing the co-precipitation of calcium and magnesium. Furthermore, with adding MnSO4 solution to NH4HCO3 solution, the effects of the initial NH4HCO3 concentration, NH4HCO3 amount, solution pH value, reaction temperature and time on carbonate precipitation were evaluated and the optimum precipitation conditions were obtained. Under the optimum conditions, the precipitation rates of Mn2+, Ca2+ and Mg2+ are 99.75%, 5.62% and 1.43%, respectively. Moreover, the prepared manganese carbonate was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). The results demonstrate that the product can be indexed to the rhombohedral structure of MnCO3.展开更多
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies a...Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36℃ to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina(S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing(in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure(including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope(SEM), and energydispersive X-ray spectroscope(EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust,bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.展开更多
In the context of heightened environmental consciousness and the growing demand for light olefins,this study explores the promising future prospects for their sustainable production from renewable resources.Light olef...In the context of heightened environmental consciousness and the growing demand for light olefins,this study explores the promising future prospects for their sustainable production from renewable resources.Light olefins(especially propylene)are a pivotal constituent of the petrochemical industry,and their demand is poised for steady growth driven by various sectors(e.g.,electric mobility,consumer goods and packaging industries),which should not rely solely on traditional petroleum-led routes.Therefore,sustainable pathways,such as the methanol-to-olefin(MTO)process catalyzed by zeolites,are gaining attention.Intending to couple the future olefin demands with the concept of a"methanol economy",this study investigates the synthesis of hierarchical Ca/ZSM-5 zeolites using a cost-effective approach involving Precipitated Calcium Carbonate(PCC)as a hard template,leading to superior catalytic performance.Comprehensive characterization techniques are employed to elucidate the cata-lyst's properties,highlighting the dual importance of mesoporosity and calcium species in optimizing its per-formance.Operando spectroscopy provides in-depth insights into its enhanced anti-coking characteristics.This research contributes to expanding the catalyst toolkit for zeolite-catalyzed MTO processes,focusing on propylene production,thereby addressing the increasing demand for light olefins while promoting sustainability and circular economy principles.展开更多
Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate p...Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.展开更多
Calcium carbonate with three-dimensional chrysanthemun flower-like structure was successfully prepared from calcium chloride and sodium carbonate ethanol/water mixed solution by a simple precipitation method,using tri...Calcium carbonate with three-dimensional chrysanthemun flower-like structure was successfully prepared from calcium chloride and sodium carbonate ethanol/water mixed solution by a simple precipitation method,using trisodium citrate as crystal modifier.The experimental results show that the three-dimensional structure of chrysanthemun flower-like calcium carbonate is built up with several symmetrical micrometer multi-layer petals arranged around the multi-layer pancake-liked center,and the micrometer center and petals are assemblied by a large number of nanometer spherical particles with size 10-20 nm.It is found that the amount of trisodium citrate,the ethanol volume content has an important influence on the formation of this morphology.A possible mechanism is proposed to explain the formation of three-dimensional chrysanthemun flower-like calcium carbonate according the results.Scanning electron microscopy(SEM),X-ray powder diffraction(XRD),flourier transform infrared spectroscopy(FT-IR),thermogravimety analysis(TG),transmission electron microscopy(TEM) equipped with energy-dispersive X-ray(EDX),and selected area electron diffraction(SAED) were used to characterize the crystals.展开更多
Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate d...Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BGll in different calcium ion concentrations was used for the experimental group, while the BGll culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BGll culture media. There may be more calcium- containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals.展开更多
Inorganic calcium carbonate precipitation from natural seawater and salinewater at various pH values was carried out experimentally. The results show the clear positiverelationships between boron concentration and δ^...Inorganic calcium carbonate precipitation from natural seawater and salinewater at various pH values was carried out experimentally. The results show the clear positiverelationships between boron concentration and δ^(11)B of inorganic calcium carbonate with the pH ofnatural seawater and saline water. However, the variations of boron isotopic fractionation betweeninorganic calcite and seawater/saline water with pH are inconsistent with the hypothesis thatB(OH)_4^- is the dominant species incorporated into the biogenic calcite structure. The isotopicfractionation factors a between synthetic calcium carbonate precipitate and parent solutionsincrease systematically as pH increases, from 0.9884 at pH 7.60 to 1.0072 at pH 8.60 for seawaterand from 0.9826 at pH 7.60 to 1.0178 at pH 8.75 for saline water. An unusual boron isotopicfractionation factor of larger than 1 in synthetic calcium carbonate precipitated fromseawater/saline water at higher pH is observed, which implies that a substantial amount of theisotopically heavier B(OH)_3 species must be incorporated preferentially into synthetic inorganiccarbonate. The results propose that the incorporation of B(OH)_3 is attributed to the formation ofMg(OH)_2 at higher pH of calcifying microenvironment during the synthetic calcium carbonateprecipitation. The preliminary experiment of Mg(OH)_2 precipitated from artificial seawater showsthat heavier ^(11)B is enriched in Mg(OH)_2 precipitation, which suggests that isotopically heavierB(OH)_3 species incorporated preferentially into Mg(OH)_2 precipitation. This result cannot beapplied to explain the boron isotopic fractionation of marine bio-carbonate because of thepossibility that the unusual environment in this study appears in formation of marine bio-carbonateis infinitesimal. We, however, must pay more attention to this phenomenon observed in this study,which accidentally appears in especially natural environment.展开更多
基金Project(51374249)supported by the National Natural Science Foundation of China
文摘The separation of manganese from sulfate solutions containing 14.59 g/L Mn2+, 1.89 g/L Mg2+ and 1.54 g/L Ca2+ was preformed successfully by carbonate precipitation. The results of thermodynamic analysis and tests indicate that carbonate precipitation holds better selectivity for manganese over magnesium than hydroxide precipitation and the feeding method is the most critical factor for minimizing the co-precipitation of calcium and magnesium. Furthermore, with adding MnSO4 solution to NH4HCO3 solution, the effects of the initial NH4HCO3 concentration, NH4HCO3 amount, solution pH value, reaction temperature and time on carbonate precipitation were evaluated and the optimum precipitation conditions were obtained. Under the optimum conditions, the precipitation rates of Mn2+, Ca2+ and Mg2+ are 99.75%, 5.62% and 1.43%, respectively. Moreover, the prepared manganese carbonate was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). The results demonstrate that the product can be indexed to the rhombohedral structure of MnCO3.
基金Prestige Institute of Engineering, Management, and Research, Indore, India for their supportGuangdong Department of Science and Technology,China for"Overseas Famous Teacher Project"(Grant No.2020A1414010268)。
文摘Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36℃ to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina(S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing(in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure(including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope(SEM), and energydispersive X-ray spectroscope(EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust,bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.
文摘In the context of heightened environmental consciousness and the growing demand for light olefins,this study explores the promising future prospects for their sustainable production from renewable resources.Light olefins(especially propylene)are a pivotal constituent of the petrochemical industry,and their demand is poised for steady growth driven by various sectors(e.g.,electric mobility,consumer goods and packaging industries),which should not rely solely on traditional petroleum-led routes.Therefore,sustainable pathways,such as the methanol-to-olefin(MTO)process catalyzed by zeolites,are gaining attention.Intending to couple the future olefin demands with the concept of a"methanol economy",this study investigates the synthesis of hierarchical Ca/ZSM-5 zeolites using a cost-effective approach involving Precipitated Calcium Carbonate(PCC)as a hard template,leading to superior catalytic performance.Comprehensive characterization techniques are employed to elucidate the cata-lyst's properties,highlighting the dual importance of mesoporosity and calcium species in optimizing its per-formance.Operando spectroscopy provides in-depth insights into its enhanced anti-coking characteristics.This research contributes to expanding the catalyst toolkit for zeolite-catalyzed MTO processes,focusing on propylene production,thereby addressing the increasing demand for light olefins while promoting sustainability and circular economy principles.
基金Projects(51978244,51979088,51608169)supported by the National Natural Science Foundation of China。
文摘Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.
基金Funded by the National Natural Science Foundation of China (No.21076131)the Foundation of Educational Commission of Hubei Province,China(No.D20122904)
文摘Calcium carbonate with three-dimensional chrysanthemun flower-like structure was successfully prepared from calcium chloride and sodium carbonate ethanol/water mixed solution by a simple precipitation method,using trisodium citrate as crystal modifier.The experimental results show that the three-dimensional structure of chrysanthemun flower-like calcium carbonate is built up with several symmetrical micrometer multi-layer petals arranged around the multi-layer pancake-liked center,and the micrometer center and petals are assemblied by a large number of nanometer spherical particles with size 10-20 nm.It is found that the amount of trisodium citrate,the ethanol volume content has an important influence on the formation of this morphology.A possible mechanism is proposed to explain the formation of three-dimensional chrysanthemun flower-like calcium carbonate according the results.Scanning electron microscopy(SEM),X-ray powder diffraction(XRD),flourier transform infrared spectroscopy(FT-IR),thermogravimety analysis(TG),transmission electron microscopy(TEM) equipped with energy-dispersive X-ray(EDX),and selected area electron diffraction(SAED) were used to characterize the crystals.
基金Supported by the National Natural Science Foundation of China(Nos.40972043,41040018,41210104058,21176145,41372108,41302079)the Higher Educational Science and Technology Program of Shandong Province(No.J10LC15)+4 种基金the China Postdoctoral Science Foundation(No.2013M540560)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,and SDUST Research Fund(No.2010KYTD103)the Open Project of Key Lab of Marine Bioactive Substance and Modern Analytical Technique,State Oceanic Administration,China(No.MBSMAT-2012-03)the Scientific and Technological Program of Qingdao(No.13-1-4-232-jch)the Domestic Visiting Scholar Program for Young Core Teachers in Shandong Universities,Shandong Province,China
文摘Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BGll in different calcium ion concentrations was used for the experimental group, while the BGll culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BGll culture media. There may be more calcium- containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals.
基金This project was supported by the National Natural Science Foundation of China (Grant No. 40373006) State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (Grant No. SKLLQG0502).
文摘Inorganic calcium carbonate precipitation from natural seawater and salinewater at various pH values was carried out experimentally. The results show the clear positiverelationships between boron concentration and δ^(11)B of inorganic calcium carbonate with the pH ofnatural seawater and saline water. However, the variations of boron isotopic fractionation betweeninorganic calcite and seawater/saline water with pH are inconsistent with the hypothesis thatB(OH)_4^- is the dominant species incorporated into the biogenic calcite structure. The isotopicfractionation factors a between synthetic calcium carbonate precipitate and parent solutionsincrease systematically as pH increases, from 0.9884 at pH 7.60 to 1.0072 at pH 8.60 for seawaterand from 0.9826 at pH 7.60 to 1.0178 at pH 8.75 for saline water. An unusual boron isotopicfractionation factor of larger than 1 in synthetic calcium carbonate precipitated fromseawater/saline water at higher pH is observed, which implies that a substantial amount of theisotopically heavier B(OH)_3 species must be incorporated preferentially into synthetic inorganiccarbonate. The results propose that the incorporation of B(OH)_3 is attributed to the formation ofMg(OH)_2 at higher pH of calcifying microenvironment during the synthetic calcium carbonateprecipitation. The preliminary experiment of Mg(OH)_2 precipitated from artificial seawater showsthat heavier ^(11)B is enriched in Mg(OH)_2 precipitation, which suggests that isotopically heavierB(OH)_3 species incorporated preferentially into Mg(OH)_2 precipitation. This result cannot beapplied to explain the boron isotopic fractionation of marine bio-carbonate because of thepossibility that the unusual environment in this study appears in formation of marine bio-carbonateis infinitesimal. We, however, must pay more attention to this phenomenon observed in this study,which accidentally appears in especially natural environment.