Water-dispersible curcumin nanoparticles were prepared by bottom-up antisolvent precipitation approach. A new high-throughput screening technique was developed for selecting appropriate ligands stabilizing the nanopar...Water-dispersible curcumin nanoparticles were prepared by bottom-up antisolvent precipitation approach. A new high-throughput screening technique was developed for selecting appropriate ligands stabilizing the nanoparticles in aqueous medium and improving their performance. The initial set of twenty-eight potential stabilizing ligands was evaluated based on their capacity to improve curcumin dispersibility in aqueous medium. The performance of four promising ligands(amino acid proline, polyphenol tannic acid, polycation Polyquaternium 10, and neutral polymer polyvinylpyrrolidone) was tested in ultrasound-aided antisolvent precipitation trials. Using the selected stabilizing ligands diminished the average particle size from ca. 1,200 to 170–230 nm, reduced their dispersity, improved stability, and allowed reaching curcumin concentration of up to 1.4 m M in aqueous medium. Storage stability of the aqueous nanodispersions varied from 2 days to 2 weeks, depending on stabilizing ligand. Studying the effects of ionic strength and pH on size and f-potential of the particles suggested that electrostatic forces and hydrophobic interactions could be the major factors affecting their stability. The ligand-protected nanoparticles showed minimal inhibitory concentration of 400 or500 μM toward Escherichia coli. We suggest that the presented screening approach may be useful for preparing nanoparticles of various poorly water-soluble bioactive materials.展开更多
The nanoparticles of the hydrophobic drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti-solvent precipitation (HGAP) process. Intensified micromixing and uniform nucl...The nanoparticles of the hydrophobic drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti-solvent precipitation (HGAP) process. Intensified micromixing and uniform nucleation environment are created by the high-gravity equipment (rotating packed bed) in carrying out the anti-solvent precipitation process to produce nanoparticles. The average particle size decreases from 55 μm of the raw danazol to 190 nm of the nanoparticles. The Brunauer-Emmett-Teller (BET) surface area sharply increases from 0.66 m^2·g^-1 to 15.08 m^2·g^-l. Accordingly, the dissolution rate is greatly improved. The molecular state, chemical composition, and crystal form of the danazol nanoparticles remains unchanged after processing according to Fourier transform infrared (FTIR) and X-ray diffraction (XRD), The high recovery ratio and continuous production capacity are highly appreciated in industry. Therefore, the HGAP method might offer a general and facile platform for mass production of hydrophobic pharmaceutical danazol particles in nanometer range.展开更多
Lutein was nano-encapsuled with hydroxypropylmethyl cellulose phthalate (HPMCP) to maintain its bioactivity and to avoid thermal/light degradation. Supercritical antisolvent precipitation was applied to prepare lute...Lutein was nano-encapsuled with hydroxypropylmethyl cellulose phthalate (HPMCP) to maintain its bioactivity and to avoid thermal/light degradation. Supercritical antisolvent precipitation was applied to prepare lutein/HPMCP nano-capsule. The effects of several operating parameters on the yield, lutein loading, encapsulation efficiency, particle size and particle size distribution of the nanocapsule were investigated. The mean diameter of nanocapsules ranged from 163 nm to 219 nm under appropriate experimental conditions. The result of scanning electron microscope showed that the nanocapsules were nearly spherical. The highest yield reached 95.35% when the initial concentration of lutein was saturated. The highest lutein loading of 15.80% and encapsulation efficiency of 88,41% were obtained under the conditions of 11 MPa, 40℃ and CHPMCP: Clutein= 5:1. The results may promote the application of lutein in food industry.展开更多
The aim of this work is to determine the structural and optical properties of Eu-doped ZnO powders prepared by supercritical antisolvent precipitation route(SAS)and to correlate the physico-chemical features with the ...The aim of this work is to determine the structural and optical properties of Eu-doped ZnO powders prepared by supercritical antisolvent precipitation route(SAS)and to correlate the physico-chemical features with the photocatalytic activity under UV light.Raman and EPR spectroscopy highlight the introduction of novel defects(mainly singly and doubly ionized oxygen vacancies,and oxygen interstitials)on the Eu-doped ZnO samples,which confer higher hydrophilicity to the doped samples with respect to bare ZnO,as evidenced by FT-IR analysis.Additionally,photoluminescence spectra show that the presence of Eu^(3+) totally quenches the visible light emission typical of bare ZnO,which mainly results from the recombination of photogenerated holes at defective sites.The prepared samples were tested both for the photocatalytic degradation of crystal violet dye(CV)and for the partial oxidation of ferulic acid under UV irradiation.The photocatalytic activity results evidence of a higher ability of Eu-doped photocatalysts to degrade CV and ferulic acid,while higher selectivity values towards vanillin are obtained in the presence of bare ZnO.The higher activity of Eu-doped ZnO photocatalysts is linked to the stabilization of photogenerated holes and to their higher hydrophilicity,both brought by the generation of defective sites induced by the presence of Eu^(3+) ions within the ZnO lattice.展开更多
基金supported by the US-Israel Binational Agricultural Research and Development (BARD) Grant US-4680-13C
文摘Water-dispersible curcumin nanoparticles were prepared by bottom-up antisolvent precipitation approach. A new high-throughput screening technique was developed for selecting appropriate ligands stabilizing the nanoparticles in aqueous medium and improving their performance. The initial set of twenty-eight potential stabilizing ligands was evaluated based on their capacity to improve curcumin dispersibility in aqueous medium. The performance of four promising ligands(amino acid proline, polyphenol tannic acid, polycation Polyquaternium 10, and neutral polymer polyvinylpyrrolidone) was tested in ultrasound-aided antisolvent precipitation trials. Using the selected stabilizing ligands diminished the average particle size from ca. 1,200 to 170–230 nm, reduced their dispersity, improved stability, and allowed reaching curcumin concentration of up to 1.4 m M in aqueous medium. Storage stability of the aqueous nanodispersions varied from 2 days to 2 weeks, depending on stabilizing ligand. Studying the effects of ionic strength and pH on size and f-potential of the particles suggested that electrostatic forces and hydrophobic interactions could be the major factors affecting their stability. The ligand-protected nanoparticles showed minimal inhibitory concentration of 400 or500 μM toward Escherichia coli. We suggest that the presented screening approach may be useful for preparing nanoparticles of various poorly water-soluble bioactive materials.
基金Supported by the National High Technology Research and Development Program of China (2006AA030202)the Talent Training Program of Beijing (2007B022)
文摘The nanoparticles of the hydrophobic drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti-solvent precipitation (HGAP) process. Intensified micromixing and uniform nucleation environment are created by the high-gravity equipment (rotating packed bed) in carrying out the anti-solvent precipitation process to produce nanoparticles. The average particle size decreases from 55 μm of the raw danazol to 190 nm of the nanoparticles. The Brunauer-Emmett-Teller (BET) surface area sharply increases from 0.66 m^2·g^-1 to 15.08 m^2·g^-l. Accordingly, the dissolution rate is greatly improved. The molecular state, chemical composition, and crystal form of the danazol nanoparticles remains unchanged after processing according to Fourier transform infrared (FTIR) and X-ray diffraction (XRD), The high recovery ratio and continuous production capacity are highly appreciated in industry. Therefore, the HGAP method might offer a general and facile platform for mass production of hydrophobic pharmaceutical danazol particles in nanometer range.
基金Supported by the National High Technology Research and Development Program of China(2007AA10Z350)
文摘Lutein was nano-encapsuled with hydroxypropylmethyl cellulose phthalate (HPMCP) to maintain its bioactivity and to avoid thermal/light degradation. Supercritical antisolvent precipitation was applied to prepare lutein/HPMCP nano-capsule. The effects of several operating parameters on the yield, lutein loading, encapsulation efficiency, particle size and particle size distribution of the nanocapsule were investigated. The mean diameter of nanocapsules ranged from 163 nm to 219 nm under appropriate experimental conditions. The result of scanning electron microscope showed that the nanocapsules were nearly spherical. The highest yield reached 95.35% when the initial concentration of lutein was saturated. The highest lutein loading of 15.80% and encapsulation efficiency of 88,41% were obtained under the conditions of 11 MPa, 40℃ and CHPMCP: Clutein= 5:1. The results may promote the application of lutein in food industry.
文摘The aim of this work is to determine the structural and optical properties of Eu-doped ZnO powders prepared by supercritical antisolvent precipitation route(SAS)and to correlate the physico-chemical features with the photocatalytic activity under UV light.Raman and EPR spectroscopy highlight the introduction of novel defects(mainly singly and doubly ionized oxygen vacancies,and oxygen interstitials)on the Eu-doped ZnO samples,which confer higher hydrophilicity to the doped samples with respect to bare ZnO,as evidenced by FT-IR analysis.Additionally,photoluminescence spectra show that the presence of Eu^(3+) totally quenches the visible light emission typical of bare ZnO,which mainly results from the recombination of photogenerated holes at defective sites.The prepared samples were tested both for the photocatalytic degradation of crystal violet dye(CV)and for the partial oxidation of ferulic acid under UV irradiation.The photocatalytic activity results evidence of a higher ability of Eu-doped photocatalysts to degrade CV and ferulic acid,while higher selectivity values towards vanillin are obtained in the presence of bare ZnO.The higher activity of Eu-doped ZnO photocatalysts is linked to the stabilization of photogenerated holes and to their higher hydrophilicity,both brought by the generation of defective sites induced by the presence of Eu^(3+) ions within the ZnO lattice.