One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH f...One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO2- and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO]-]/[NO3] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.展开更多
This paper reports the analysis results (including pH,conductivity and ion concentrations) of the precipitation samples collected at the Chinese Great Wall Station,Antarctica (62°13′S, 58°58′W,ASL10.0 m) i...This paper reports the analysis results (including pH,conductivity and ion concentrations) of the precipitation samples collected at the Chinese Great Wall Station,Antarctica (62°13′S, 58°58′W,ASL10.0 m) in 1998.The average pH value and conductivity were 5.62 and 85.16 μS/cm,respectively.The pH value and conductivity of precipitation were higher during autumn, but lower during other seasons.The major ions in the precipitation were C1- and Na+,followed by SO_4^(2-),Mg^(2+),Ca^(2+),K^+,NO_3^-,NH_4^+ with the lower concentrations in order.The positive correlation significantly existing between the major ions,except NO_3^- and NH_4^+,indicated that those major ions might come from same sources.The fact that the relative abundances of ions in precipitation were very close to that of seawater of Antarctic Ocean indicated that marine aerosol was the dominant source of the ions of precipitation.However,there were yet other sources which may contribute to Ca^(2+) ion in the precipitation.The precipitation at the area was characterized by marine type chemically.展开更多
The atmospheric precipitation plays an important role in influencing the river chemistry of the Dongjiang River. The atmospheric contribution to river water is estimated by reference to Cl concentration called Cl r...The atmospheric precipitation plays an important role in influencing the river chemistry of the Dongjiang River. The atmospheric contribution to river water is estimated by reference to Cl concentration called Cl ref . The Cl ref of 41 97 μmol/L represents the highest chloride concentration of the rainwater inputs to river water, thus sea salts are responsible for total Cl concentration of the Dongjiang River. According to the principal compositions of precipitation and river water, two approaches sea salt correction and precipitation correction were proposed in order to correct the contribution proportions of atmospheric precipitation on the solutes and to calculate chemical weathering rate. The results reflected that the atmospheric contribution ratios fluctuate from ~5% to ~20% of TDS(total dissolved solids) in the Dongjiang River. As compared with the other world watersheds, the lower dissolved ion contents and high runoff may result in the obvious influence of precipitation on river chemistry in the Dongjiang basin. The major elemental chemistry is mainly controlled by silicate weathering, with the anion HCO - 3 and cation Ca 2+ and Na\++ dominating the major compositions in this basin. The estimated chemical weathering rate of 15 78—23 48 t/(km 2·a) is only 40%—60% of a global average in the Dongjiang basin. Certainly, the estimated results are still under correction gradually because the effect of human activities on the precipitation chemistry has never been quantified in detail.展开更多
Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6...Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca^(2+), Mg^(2+), Na~+, K~+ and NH_4~+) and anions(SO_4^(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4^(2–)-Ca^(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg^(2+), SO_4^(2–), NO_3~– and Ca^(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for the effective prevention of atmospheric pollution.展开更多
In order to evaluate seasonal and regional variations in precipitation in Niigata City, 65 hourly precipitation samples were collected from October 2009 to June 2011 including two snow events. In this work, major ions...In order to evaluate seasonal and regional variations in precipitation in Niigata City, 65 hourly precipitation samples were collected from October 2009 to June 2011 including two snow events. In this work, major ions (Na+, K+, Ca2+, Mg2+, NH4+, SO4^2-, NO3- and Cl-) were combined with tritium (^3H or T) concentration (T specific activity) in both precipitation and snow, and transformation patterns of polluted air mass in Niigata region were revealed. The low level tritium in precipitation was measured by a distillation process and an electrolytic enrichment process. Each tritium concentration in the precipitation sample thus obtained was measured by liquid scintillation counter. On the basis of the above measurement and analysis, it was found that the tritium and nss (non-sea-salt) calcium concentrations showed a seasonal variation with a highest value in spring over one year.展开更多
The volume fraction of δ phase in cold rolled Inconel 718 alloy aged at 910℃ for different times is measured by X ray diffraction techniques, and the influence of cold rolling on the kinetics of δ phase precipitat...The volume fraction of δ phase in cold rolled Inconel 718 alloy aged at 910℃ for different times is measured by X ray diffraction techniques, and the influence of cold rolling on the kinetics of δ phase precipitation is investigated. It has been found that the relation between the volume fraction of δ phase and aging time follows the Avrami equation. With increasing cold rolling reduction, the value of n decreases and the value of a increases.展开更多
There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnusjaponica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, J...There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnusjaponica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, Japan. To clarify maintenance mechanisms, we studied the forest profile, water level, groundwater and precipitation chemistry, seedling establishment patterns in relation to microhabitats, and seed migration. The profile of groundwater level insufficiently explained the abrupt boundary formation, while the groundwater chemistry differed significantly between the two forests ; i.e., EC, Na^+, K^+, Mg^2+, Ca^2+ and Cl^- were higher in P. glehnii forest and pH was lower. Precipitation in P. glehnii forest contained richer Na+, Ca^2+ and Cl^-, indicating that the differences in surface-water chemistry were mostly derived from precipitation. Solar radiation was less than 2.2 MJ.m^-2.d^-1 on P. glehnii forest in late June, while that was patchily distributed in A.japonica forest with a range from 1.0 to 3.7 MJ'm^-2'd^-1. Moss cover on the soil surface, most of which were made of Sphagnum spp., was 60% in P. glehnii forest, but was 10% in A. japonica forest. Surface water chemistry represented by pH was considered to determine the development of Sphagnum moss. About 70% of P. glehnii seedlings 〈 1.3 m in height established on moss cover. Seed-sowing experiments suggested that seed germination and seedling survival for both species were significantly higher in P. glehnii forest. Therefore, the regeneration of P. glehnii in A. japonica forest was negligible, owing to the paucity of favorable microhabitats and low seedling establishment. A. japonica regenerated only by resprouting, and the seedlings were few in both forests. In addition, A. japonica seed migration into the P. glehnii forests was greatly restricted, and low solar radiation in the P. glehnii forest contributed to low seedling survival. Based on those results, we concluded that Picea glehnii and Alnusjaponica could develop distinct and selfish environments being unsuitable for the other species and inhibit natural afforestation of another species each other by excluding invasion.展开更多
There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnus japonica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, ...There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnus japonica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, Japan.To clarify maintenance mechanisms, we studied the forest profile, water level, groundwater and precipitation chemistry, seedling establishment patterns in relation to microhabitats, and seed migration.The profile of groundwater level insufficiently explained the abrupt boundary formation, while the groundwater che-mistry differed significantly between the two forests;i.e., EC, Na+, K+, Mg2+, Ca2+ and Cl-were higher in P.glehnii forest and pH was lower.Precipitation in P.glehnii forest contained richer Na+, Ca2+ and Cl-, indicating that the differences in surface-water chemistry were mostly derived from precipitation.Solar radiation was less than 2.2 MJ·m-2·d-1 on P.glehnii forest in late June, while that was patchily distributed in A.japonica forest with a range from 1.0 to 3.7 MJ·m-2·d-1.Moss cover on the soil surface, most of which were made of Sphagnum spp., was 60% in P.glehnii forest, but was 10% in A.japonica forest.Surface water chemistry represented by pH was considered to determine the development of Sphagnum moss.About 70% of P.glehnii seedlings < 1.3 m in height established on moss cover.Seed-sowing experiments suggested that seed germination and seedling survival for both species were significantly higher in P.glehnii forest.Therefore, the regeneration of P.glehnii in A.japonica forest was negligible, owing to the paucity of favorable microhabitats and low seedling establishment.A.japonica regenerated only by resprouting, and the seedlings were few in both forests.In addition, A.japonica seed migration into the P.glehnii forests was greatly restricted, and low solar radiation in the P.glehnii forest contributed to low seedling survival.Based on those results, we concluded that Picea glehnii and Alnus japonica could develop distinct and selfish environments being unsuitable for the other species and inhibit natural afforestation of another species each other by excluding invasion.展开更多
Rainfall samples were collected from three observation sites in Guilin from 2013 to 2017, and the chemical composition characteristics of precipitation and the contribution made by different ion sources were analyzed ...Rainfall samples were collected from three observation sites in Guilin from 2013 to 2017, and the chemical composition characteristics of precipitation and the contribution made by different ion sources were analyzed when atmospheric pollutants levels were reduced. The results showed that acid gas emissions and atmospheric pollutant concentrations continued to decline during the study period. However, the change in the volume-weighted mean p H at the three sites suggested that acid rain pollution was not alleviated and began to deteriorate after 2015. The continuing downward trend for alkaline neutralizing ions(Ca^(2+), NH_4^+) in precipitation indicated that the reduction in alkaline neutralizing substances in the atmosphere was an important factor that led to the deterioration in acid rain across Guilin. The principal component analysis and spearman correlation analysis indicated five sources of ions in precipitation. Quantitative assessment of these five sources indicated that fossil fuel combustion contributed the most ions concentration in precipitation at the three sites, followed by agriculture, terrestrial(crustal) sources, marine sources, and biomass burning. Long-distance airflow might affect the acidity, the electrical conductivity(EC), and ion concentrations in precipitation across Guilin. The airflow trajectory from the west and southeast directions corresponded to higher acidity and ion concentrations. According to the current air pollution control strategy planned by Guilin, reducing atmospheric coarse particles and NH_3 at the same time may potentially lead to further deteriorations in acid rain contents. Therefore, Guilin needs to develop more reasonable pollution prevention measures that synergistically control atmospheric pollutants and acid rain pollution.展开更多
Precipitation represents an important phenomenon for carbon and nitrogen deposition.Here,the concentrations and fluxes of dissolved organic carbon(DOC)and total dissolved nitrogen(TDN)with their potential sources were...Precipitation represents an important phenomenon for carbon and nitrogen deposition.Here,the concentrations and fluxes of dissolved organic carbon(DOC)and total dissolved nitrogen(TDN)with their potential sources were analyzed in wet precipitation during summer monsoon from the Northern Indo-Gangetic Plain(IGP),important but neglected area.The volume-weighted mean(VWM)concentration of DOC and TDN were 687.04 and 1210.23μg/L,respectively.Similarly,the VWM concentration of major ions were in a sequence of NH_(4)^(+)>Ca^(2+)>SO_(4)^(2-)>Na^(+)>K^(+)>NO_(3)~->Cl~->Mg^(2+)>F~->NO_(2)~-,suggesting NH_(4)^(+)and Ca^(2+)from agricultural activities and crustal dust played a vital role in precipitation chemistry.Moreover,the wet deposition flux of DOC and TDN were 9.95 and 17.06 kg/(ha year),respectively.The wet deposition flux of inorganic nitrogen species such as NH_(4)^(+)-N and NO_(3)^(-)-N were 14.31 and 0.47 kg/(ha year),respectively,demonstrating the strong influence of emission sources and precipitation volume.Source attribution from different analysis suggested the influence of biomass burning on DOC and anthropogenic activities(agriculture,animal husbandry)on nitrogenous species.The air-mass back trajectory analysis indicated the influence of air masses originating from the Bay of Bengal,which possibly carried marine and anthropogenic pollutants along with the biomass burning emissions to the sampling site.This study bridges the data gap in the less studied part of the northern IGP region and provides new information for policy makers to deal with pollution control.展开更多
基金supported by funds from the Scientific Research Projects of High-level Talents of the Department of Human Resources and Social Security of Anhui Province (Grant No.2009Z019)the State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry (Grant No.LAPC-KF-201105)
文摘One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO2- and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO]-]/[NO3] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.
基金Sponsored by the Youth Meteorological Science Fund in the Ninth Five-Year Plan from China Meteorological Administration
文摘This paper reports the analysis results (including pH,conductivity and ion concentrations) of the precipitation samples collected at the Chinese Great Wall Station,Antarctica (62°13′S, 58°58′W,ASL10.0 m) in 1998.The average pH value and conductivity were 5.62 and 85.16 μS/cm,respectively.The pH value and conductivity of precipitation were higher during autumn, but lower during other seasons.The major ions in the precipitation were C1- and Na+,followed by SO_4^(2-),Mg^(2+),Ca^(2+),K^+,NO_3^-,NH_4^+ with the lower concentrations in order.The positive correlation significantly existing between the major ions,except NO_3^- and NH_4^+,indicated that those major ions might come from same sources.The fact that the relative abundances of ions in precipitation were very close to that of seawater of Antarctic Ocean indicated that marine aerosol was the dominant source of the ions of precipitation.However,there were yet other sources which may contribute to Ca^(2+) ion in the precipitation.The precipitation at the area was characterized by marine type chemically.
文摘The atmospheric precipitation plays an important role in influencing the river chemistry of the Dongjiang River. The atmospheric contribution to river water is estimated by reference to Cl concentration called Cl ref . The Cl ref of 41 97 μmol/L represents the highest chloride concentration of the rainwater inputs to river water, thus sea salts are responsible for total Cl concentration of the Dongjiang River. According to the principal compositions of precipitation and river water, two approaches sea salt correction and precipitation correction were proposed in order to correct the contribution proportions of atmospheric precipitation on the solutes and to calculate chemical weathering rate. The results reflected that the atmospheric contribution ratios fluctuate from ~5% to ~20% of TDS(total dissolved solids) in the Dongjiang River. As compared with the other world watersheds, the lower dissolved ion contents and high runoff may result in the obvious influence of precipitation on river chemistry in the Dongjiang basin. The major elemental chemistry is mainly controlled by silicate weathering, with the anion HCO - 3 and cation Ca 2+ and Na\++ dominating the major compositions in this basin. The estimated chemical weathering rate of 15 78—23 48 t/(km 2·a) is only 40%—60% of a global average in the Dongjiang basin. Certainly, the estimated results are still under correction gradually because the effect of human activities on the precipitation chemistry has never been quantified in detail.
基金supported by the Gansu Province Science Fund for Distinguished Young Scholars (1506RJDA282)the National Natural Science Foundation of China (41271039, 91547102)+2 种基金the Open Foundation of MOE Key Laboratory of Western China’s Environmental System of Lanzhou Universitythe Open Foundation from State Key Laboratory (SKLFSE201403)the West Light Program for Talent Cultivation of Chinese Academy of Sciences
文摘Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca^(2+), Mg^(2+), Na~+, K~+ and NH_4~+) and anions(SO_4^(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4^(2–)-Ca^(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg^(2+), SO_4^(2–), NO_3~– and Ca^(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for the effective prevention of atmospheric pollution.
文摘In order to evaluate seasonal and regional variations in precipitation in Niigata City, 65 hourly precipitation samples were collected from October 2009 to June 2011 including two snow events. In this work, major ions (Na+, K+, Ca2+, Mg2+, NH4+, SO4^2-, NO3- and Cl-) were combined with tritium (^3H or T) concentration (T specific activity) in both precipitation and snow, and transformation patterns of polluted air mass in Niigata region were revealed. The low level tritium in precipitation was measured by a distillation process and an electrolytic enrichment process. Each tritium concentration in the precipitation sample thus obtained was measured by liquid scintillation counter. On the basis of the above measurement and analysis, it was found that the tritium and nss (non-sea-salt) calcium concentrations showed a seasonal variation with a highest value in spring over one year.
文摘The volume fraction of δ phase in cold rolled Inconel 718 alloy aged at 910℃ for different times is measured by X ray diffraction techniques, and the influence of cold rolling on the kinetics of δ phase precipitation is investigated. It has been found that the relation between the volume fraction of δ phase and aging time follows the Avrami equation. With increasing cold rolling reduction, the value of n decreases and the value of a increases.
文摘There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnusjaponica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, Japan. To clarify maintenance mechanisms, we studied the forest profile, water level, groundwater and precipitation chemistry, seedling establishment patterns in relation to microhabitats, and seed migration. The profile of groundwater level insufficiently explained the abrupt boundary formation, while the groundwater chemistry differed significantly between the two forests ; i.e., EC, Na^+, K^+, Mg^2+, Ca^2+ and Cl^- were higher in P. glehnii forest and pH was lower. Precipitation in P. glehnii forest contained richer Na+, Ca^2+ and Cl^-, indicating that the differences in surface-water chemistry were mostly derived from precipitation. Solar radiation was less than 2.2 MJ.m^-2.d^-1 on P. glehnii forest in late June, while that was patchily distributed in A.japonica forest with a range from 1.0 to 3.7 MJ'm^-2'd^-1. Moss cover on the soil surface, most of which were made of Sphagnum spp., was 60% in P. glehnii forest, but was 10% in A. japonica forest. Surface water chemistry represented by pH was considered to determine the development of Sphagnum moss. About 70% of P. glehnii seedlings 〈 1.3 m in height established on moss cover. Seed-sowing experiments suggested that seed germination and seedling survival for both species were significantly higher in P. glehnii forest. Therefore, the regeneration of P. glehnii in A. japonica forest was negligible, owing to the paucity of favorable microhabitats and low seedling establishment. A. japonica regenerated only by resprouting, and the seedlings were few in both forests. In addition, A. japonica seed migration into the P. glehnii forests was greatly restricted, and low solar radiation in the P. glehnii forest contributed to low seedling survival. Based on those results, we concluded that Picea glehnii and Alnusjaponica could develop distinct and selfish environments being unsuitable for the other species and inhibit natural afforestation of another species each other by excluding invasion.
基金supported by the grants from Ministry of Education, Science, and Culture of Japan.
文摘There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnus japonica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, Japan.To clarify maintenance mechanisms, we studied the forest profile, water level, groundwater and precipitation chemistry, seedling establishment patterns in relation to microhabitats, and seed migration.The profile of groundwater level insufficiently explained the abrupt boundary formation, while the groundwater che-mistry differed significantly between the two forests;i.e., EC, Na+, K+, Mg2+, Ca2+ and Cl-were higher in P.glehnii forest and pH was lower.Precipitation in P.glehnii forest contained richer Na+, Ca2+ and Cl-, indicating that the differences in surface-water chemistry were mostly derived from precipitation.Solar radiation was less than 2.2 MJ·m-2·d-1 on P.glehnii forest in late June, while that was patchily distributed in A.japonica forest with a range from 1.0 to 3.7 MJ·m-2·d-1.Moss cover on the soil surface, most of which were made of Sphagnum spp., was 60% in P.glehnii forest, but was 10% in A.japonica forest.Surface water chemistry represented by pH was considered to determine the development of Sphagnum moss.About 70% of P.glehnii seedlings < 1.3 m in height established on moss cover.Seed-sowing experiments suggested that seed germination and seedling survival for both species were significantly higher in P.glehnii forest.Therefore, the regeneration of P.glehnii in A.japonica forest was negligible, owing to the paucity of favorable microhabitats and low seedling establishment.A.japonica regenerated only by resprouting, and the seedlings were few in both forests.In addition, A.japonica seed migration into the P.glehnii forests was greatly restricted, and low solar radiation in the P.glehnii forest contributed to low seedling survival.Based on those results, we concluded that Picea glehnii and Alnus japonica could develop distinct and selfish environments being unsuitable for the other species and inhibit natural afforestation of another species each other by excluding invasion.
基金supported by the Special Scientific Research Business of Central-level Public Welfare Research Institutes (No. 2015-YSKY-09)the Guangxi Key Research and Development Plan for Department of Guangxi Science (No. GUIKEAB16380292)。
文摘Rainfall samples were collected from three observation sites in Guilin from 2013 to 2017, and the chemical composition characteristics of precipitation and the contribution made by different ion sources were analyzed when atmospheric pollutants levels were reduced. The results showed that acid gas emissions and atmospheric pollutant concentrations continued to decline during the study period. However, the change in the volume-weighted mean p H at the three sites suggested that acid rain pollution was not alleviated and began to deteriorate after 2015. The continuing downward trend for alkaline neutralizing ions(Ca^(2+), NH_4^+) in precipitation indicated that the reduction in alkaline neutralizing substances in the atmosphere was an important factor that led to the deterioration in acid rain across Guilin. The principal component analysis and spearman correlation analysis indicated five sources of ions in precipitation. Quantitative assessment of these five sources indicated that fossil fuel combustion contributed the most ions concentration in precipitation at the three sites, followed by agriculture, terrestrial(crustal) sources, marine sources, and biomass burning. Long-distance airflow might affect the acidity, the electrical conductivity(EC), and ion concentrations in precipitation across Guilin. The airflow trajectory from the west and southeast directions corresponded to higher acidity and ion concentrations. According to the current air pollution control strategy planned by Guilin, reducing atmospheric coarse particles and NH_3 at the same time may potentially lead to further deteriorations in acid rain contents. Therefore, Guilin needs to develop more reasonable pollution prevention measures that synergistically control atmospheric pollutants and acid rain pollution.
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0605)the National Natural Science Foundation of China(No.41630754)+2 种基金State Key Laboratory of Cryospheric Sciences(No.SKLCS-ZZ-2020)the Chinese Academy of Science for international Young staff support under President's International Fellowship Initiative(PIFI)(No.2020FYC0001)programthe Research Grants Council(RGC)of Hong Kong for providing Hong Kong PhD Fellowship Scheme(HKPFS),2020/21(No.PF19-33279)。
文摘Precipitation represents an important phenomenon for carbon and nitrogen deposition.Here,the concentrations and fluxes of dissolved organic carbon(DOC)and total dissolved nitrogen(TDN)with their potential sources were analyzed in wet precipitation during summer monsoon from the Northern Indo-Gangetic Plain(IGP),important but neglected area.The volume-weighted mean(VWM)concentration of DOC and TDN were 687.04 and 1210.23μg/L,respectively.Similarly,the VWM concentration of major ions were in a sequence of NH_(4)^(+)>Ca^(2+)>SO_(4)^(2-)>Na^(+)>K^(+)>NO_(3)~->Cl~->Mg^(2+)>F~->NO_(2)~-,suggesting NH_(4)^(+)and Ca^(2+)from agricultural activities and crustal dust played a vital role in precipitation chemistry.Moreover,the wet deposition flux of DOC and TDN were 9.95 and 17.06 kg/(ha year),respectively.The wet deposition flux of inorganic nitrogen species such as NH_(4)^(+)-N and NO_(3)^(-)-N were 14.31 and 0.47 kg/(ha year),respectively,demonstrating the strong influence of emission sources and precipitation volume.Source attribution from different analysis suggested the influence of biomass burning on DOC and anthropogenic activities(agriculture,animal husbandry)on nitrogenous species.The air-mass back trajectory analysis indicated the influence of air masses originating from the Bay of Bengal,which possibly carried marine and anthropogenic pollutants along with the biomass burning emissions to the sampling site.This study bridges the data gap in the less studied part of the northern IGP region and provides new information for policy makers to deal with pollution control.