The precipitation distributions associated with two landfalling tropical cyclones(TCs) during extratropical transition(ET) were examined in this study.Their distinction is that the bulk of precipitation fell to th...The precipitation distributions associated with two landfalling tropical cyclones(TCs) during extratropical transition(ET) were examined in this study.Their distinction is that the bulk of precipitation fell to the left of the TC track in one TC and to the right in the other.The analyses indicate that,for the TC Haima(2004) case,accompanied by the approach of a deep midlatitude trough throughout the depth of the troposphere,the warm and moist air advection by the southeasterly flow north of TC was favorable for warm advection and frontogenesis to the northwest of the TC.Due to the steepening of equivalent potential temperature(θ e),the air-parcel uplift along the θ e surface,in collaboration with thermally direct circulation related to frontogenesis,led to enhanced precipitation northwest of the TC.In contrast,for TC Matsa(2005) embedded within a moister environment,a weak midlatitude trough was situated at the mid-upper level.The convection was triggered by the conditional instability at the lower level and then sustained by dynamic forcing at the mid-upper level so that the heavy precipitation occurred to the northeast of TC.For the two TC cases,the precipitation enhancement was also linked to the upper-level anomalous divergence associated with the jet-related forcing on the right side of the jet entrance.From the quasigeostrophic perspective,the advection of geostrophic absolute vorticity by the thermal wind most likely served as an indication reflecting the displacement of the vertical motion relative to the center of the TC.展开更多
A computer simulation study on dynamics for the precipitation of δ'(Al_3Li) ordered particles from a disor- dered matrix (α) in binary Al-Li alloys is performed using the microscopic Langevin equation. A unique ...A computer simulation study on dynamics for the precipitation of δ'(Al_3Li) ordered particles from a disor- dered matrix (α) in binary Al-Li alloys is performed using the microscopic Langevin equation. A unique precipitation mechanism is found near the ordering spinodal line. Different from the classical nucleation mechanism in the me- tastable region and the congruent ordering followed by spinodal decomposition in the instable region, a nonstoichi- ometric single ordered phase with composition fluctuations is formed by non-classical nucleation, and this ordered phase decomposes spinodally. It can be concluded that the precipitation dynamics of δ' phase from metastability to instability is gradual, and no sharp transition occurs near the mean-field spinodal line as the mean-field theory pre- dicts.展开更多
This paper investigated on influence of different alloying elements added into duplex stainless steel (DSS) on phase transitions using thermochemical methods in comparison with experiment.The results showed that the m...This paper investigated on influence of different alloying elements added into duplex stainless steel (DSS) on phase transitions using thermochemical methods in comparison with experiment.The results showed that the most possible species in the ferrite phase,austenite phase,σphase,Hcp phase,χphase,and carbide were Cr:Va-type,Fe:Va-type,Ni:Cr:Mo-type,Cr_(2)N-type,Fe_(24)Mo_(10)Cr_(24)-type,and Cr:Mo:C-type,respectively.Furthermore,the Ni,N,Cr,and Mo alloying had significant influences on the transition of each DSS phase.The Ni and N additions obviously raised the temperature at ferrite-1/austenite-1 balance while the Cr and Mo decreased the dual-phase balance temperature.In addition,the Ni addition can promote the precipitating ofσphase at relatively high temperature while the precipitating of Hcp phase at relatively low temperature.The Hcp phase andχphase can be obviously increased by the N addition.The introduction of Cr and Mo notably enhances the precipitation ofσphase.However,the promotion ofχphase precipitation is facilitated by the presence of Mo,while the Cr element acts as an inhibitor forχphase precipitation.Furthermore,the ferrite/austenite ratio tested by experiment was higher than that calculated by thermochemical methods,thus pre-designed solution temperature should be lower about 30-100℃than that calculated by thermochemical methods.展开更多
Ultra-high-molecular-weight polyethylene(UHMWPE)plays an important role in many important fields as engineering plastics.In this contribution,a precipitation polymerization strategy is developed by combination of high...Ultra-high-molecular-weight polyethylene(UHMWPE)plays an important role in many important fields as engineering plastics.In this contribution,a precipitation polymerization strategy is developed by combination of highly active phosphino-phenolate nickel catalysts with polymer-insoluble solvent(heptane)to access UHMWPE(Mn up to 8.3×10^(6)g mol^(-1))with good product morphology,free-flowing characteristics,and great mechanical properties.Compared with the academically commonly used aromatic solvent(toluene),the utilization of heptane offers simultaneous enhancement in important parameters including activity,polymer molecular weight,and catalyst thermal stability.This system can also generate polar functionalized UHMWPE with molecular weight of up to 1.6×10^(6)g mol^(-1)in the copolymerization of ethylene with polar comonomers.More importantly,this precipitation polymerization strategy is generally applicable to several representative transition metal catalyst systems,leading to UHMWPE synthesis with good product morphology control.展开更多
A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coher...A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.展开更多
Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-...Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-perature and the amount of solid precipitated in the different conditions. A modified thermodynamic solid-liquid equilibrium model to calculate wax precipitation in crude oil systems has been developed recently. The assumption that precipitated waxes consist of several solid phases is adopted in this research, and the solid-solid transition is also considered in the modified model. The properties of the pseudo-components are determined by using empirical correlations. New correlations for properties of solid-solid and solid-liquid transitions are also established in this work on the basis of the data from the literature. The results predicted by the proposed model for three crude oil systems are compared with the experimental data and the calculated results from the literature, and good agreement is observed.展开更多
In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon p...In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China. The wet and dry spells between Seoul (southern China) and northern China are out-of-phase (out-of-phase) at the quasi-60-year timescale, and in-phase (out-of-phase by approximately 90 ? before 1900 and in-phase after 1900) at the quasi-40-year timescale. In particular, during the last century, the dominant long-term timescales over East Asia tend to decrease from the quasi-60-year to the quasi-40-year with increasing time. The dominant quasi-40-year and quasi-60-year timescales of the Seoul precipitation in Korea are strongly correlated with these timescales of the northern Pacific Ocean.展开更多
This study introduces a new dynamical quantity, shear gradient vorticity (SGV), which is defined as vertical wind shear multiplying the horizontal component of vorticity gradient, aiming to diagnose heavy precipitatio...This study introduces a new dynamical quantity, shear gradient vorticity (SGV), which is defined as vertical wind shear multiplying the horizontal component of vorticity gradient, aiming to diagnose heavy precipitation induced by some strong convective weather systems. The vorticity gradient component can be used to study the collision or merging process between different vortexes or the deformation of a vortex with a sharp vorticity gradient. Vertical wind shear, another contributed component of SGV, always represents the environmental dynamical factor in meteorology. By the combined effect of the two components, overall, SGV can represent the interaction between the environmental wind shear and the evolution of vortexes with a large vorticity gradient. Other traditional vorticity-like dynamical quantities (such as helicity) have the limitation in the diagnosis of the convection, since they do not consider the vorticity gradient. From this perspective, SGV has the potential to diagnose some strong convective weather processes, such as Extratropical Transition (ET) of tropical cyclones and the evolution of multicell storms. The forecast performance of SGV for the numerical ET case of Typhoon Toraji (0108) has been evaluated. Compared with helicity, SGV has shown a greater advantage to forecast the distribution of heavy precipitation more accurately, especially in the frontal zone.展开更多
An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the inc...An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the increase of the elastic stiffness,the change of the yield surface due to MICP cementation and the degradation of calcium carbonate bonds during shearing.Specifically,to capture the typical contraction-dilation transition in MICP soils,the original volumetric hardening rule in the MCC model is modified to a combined deviatoric and volumetric hardening rule.The model could reproduce a series of drained triaxial tests on MICP-treated soils with different calcium carbonate contents.Further,we carry out a parametric study and observe numerical instability in some cases.In combination with an analytical analysis,our numerical modelling has identified the benefits and limitations of using MCCbased models in the simulation of MICP-cemented soils,leading to suggestions for further model development.展开更多
In the context of global warming,escalating water cycles have led to a surge in drought frequency and severity.Yet,multidecadal fluctuations in drought and their multifaceted influencing factors remain inadequately un...In the context of global warming,escalating water cycles have led to a surge in drought frequency and severity.Yet,multidecadal fluctuations in drought and their multifaceted influencing factors remain inadequately understood.This study examined the multidecadal changes in drought characteristics(frequency,duration,and severity)and their geographical focal points within China's north-south transitional zone,the Qinling-Daba Mountains(QDM),from 1960 to 2017 using the Standardized Precipitation Evapotranspiration Index(SPEI).In addition,a suite of eight scenarios,correlation analysis,and wavelet coherence were used to identify the meteorological and circulation factors that influenced drought characteristics.The results indicate the following:(1)From 1960 to 2017,the QDM experienced significant interdecadal variations in drought frequency,duration,and severity,the climate was relatively humid before the 1990s,but drought intensified thereafter.Specifically,the 1990s marked the period of the longest drought duration and greatest severity,while the years spanning 2010 to 2017 experienced the highest frequency of drought events.(2)Spatially,the Qinling Mountains,particularly the western Qinling Mountain,exhibited higher drought frequency,duration,and severity than the Daba Mountains.This disparity can be attributed to higher rates of temperature increase and precipitation decrease in the western Qinling Mountain.(3)Interdecadal variations in droughts in the QDM were directly influenced by the synergistic effects of interdecadal fluctuations in air temperature and precipitation.Circulation factors modulate temperature and precipitation through phase transitions,thereby affecting drought dynamics in the QDM.The Atlantic Multidecadal Oscillation emerges as the primary circulation factors influencing temperature changes,with a mid-1990s shift to a positive phase favoring warming.The East Asian Summer Monsoon and El Ni?o-Southern Oscillation are the main circulation factors affecting precipitation changes,with positive phase transitions associated with reduced precipitation,and vice versa for increased precipitation.展开更多
The precipitate and the coacervate are two aggregated states in the polyelectrolyte complexes(PECs).The precipitate-to-coacervate transition and glass transition in PECs have been widely reported in the past.In many c...The precipitate and the coacervate are two aggregated states in the polyelectrolyte complexes(PECs).The precipitate-to-coacervate transition and glass transition in PECs have been widely reported in the past.In many cases,the two phenomena are studied independently,although both of them are apparently affected by water and small ions.Here,utilizing a PEC system consisting of poly(acrylic acid)(PAA)and a cationic bolaamphiphile(DBON),we explore the states of PECs as a function of salt,temperature,and the molecular weight of PAAs.By a combination of microscopic observation,time-resolved fluorescence measurements,and differential scanning calorimetry,we identify salt/temperature driven precipitate-to-coacervate transitions of the complexes.The thermally induced morphology transformation from the precipitate to coacervate occurs around the glass transition temperature,indicating a strong correlation between the two processes.As the molecular weight of the PAA increases,the thermal transition temperature becomes higher.This finding offers new insights on the mechanistic interactions that dictate the aggregated states of PECs.Based on the photothermal effect of DBON,we also develop a UV light-induced strategy to mediate the precipitate-to-coacervate transition,providing a fantastic platform to create functional PEC materials.展开更多
Segregation and inclusion precipitation are the common behaviours of steel solidification, which are resulted from the redistribution and diffusion of the solute elements at the solid-liquid interface. The effect of t...Segregation and inclusion precipitation are the common behaviours of steel solidification, which are resulted from the redistribution and diffusion of the solute elements at the solid-liquid interface. The effect of the phase transition of high-sulfur free-cutting steel is quantified in the present work for the solute partition coefficient(ki), inclusion precipitation, and microsegregation by establishing a coupling model of microsegregation and inclusion precipitation, wherein the quantified dependencies of ki in terms of temperature, phase and carbon(C) content were applied. Results showed that the solidification temperature range and phase transition of high-sulfur steel that under different solidification paths and C contents were quite different, leading to differences in ki and eventually in microsegregation. kC,kP, and kS were mainly affected by phase composition and kSi was primarily by temperature, while kMn depended on both phase composition and temperature during solidification. Increasing the C content within the interval 0.07-0.48 wt%, the ‘proportion of the δ phase maintained temperature region during solidification’(Pδ), kave Pand kave S(kiave, the average value of the ki across the whole stages of solidification)decreased monotonically, whereas kave Cincreased linearly. The peritectic reaction impacted on the phase composition and ki, leading to the change in microsegregation. Such effect of the peritectic reaction was more significant at the last stage of solidification. When the Pδ was between 75% and 100%(corresponding to 0.07-0.16 wt% C), the solidification path resulted in a greater effect on the microsegregation of solutes C, P, and S because of the peritectic reaction. The microsegregation of solutes Mn and S were comprehensively influenced by kMn, kS and Mn S precipitation as well. The studies would help reveal the solute redistribution at the solid-liquid interface, and improve the segregation of high-sulfur steel by controlling the solidification and precipitation in practice.展开更多
Two kinds of low-carbon low-silicon TRIP (Transformation Induced Plasticity) steels containing vanadium are designed using ThermoCalc software in the light of both thermodynamics and kinetics.TRIP heat treatment proce...Two kinds of low-carbon low-silicon TRIP (Transformation Induced Plasticity) steels containing vanadium are designed using ThermoCalc software in the light of both thermodynamics and kinetics.TRIP heat treatment process of different steels is determined according to the calculation results respectively.Weld HAZ (Heat-Affected Zone) simulation tests indicate the weldability of TRIP steels is crucially sensitive to CE (carban equivelent) of the steel.However the impact toughness of CGHAZ (Coarse Grain Heat-Affected Zone) does not decrease drastically for TRIP steels microalloyed with Ti+V.The steel containing both of vanadium and titanium shows smaller grain size compared with that containing vanadium solely.This is because the precipitation of Ti/V carbonitride slows down the grain boundary motion speed and then retards the grain size coalescence in CGHAZ.展开更多
基金supported by National Basic Research Program of China (Grant No.2009CB421505)Special Scientific Research project for Public Interest (Grant No. GYHY201006021)National Natural Science Foundation of China (Grant No.40921160379),respectively
文摘The precipitation distributions associated with two landfalling tropical cyclones(TCs) during extratropical transition(ET) were examined in this study.Their distinction is that the bulk of precipitation fell to the left of the TC track in one TC and to the right in the other.The analyses indicate that,for the TC Haima(2004) case,accompanied by the approach of a deep midlatitude trough throughout the depth of the troposphere,the warm and moist air advection by the southeasterly flow north of TC was favorable for warm advection and frontogenesis to the northwest of the TC.Due to the steepening of equivalent potential temperature(θ e),the air-parcel uplift along the θ e surface,in collaboration with thermally direct circulation related to frontogenesis,led to enhanced precipitation northwest of the TC.In contrast,for TC Matsa(2005) embedded within a moister environment,a weak midlatitude trough was situated at the mid-upper level.The convection was triggered by the conditional instability at the lower level and then sustained by dynamic forcing at the mid-upper level so that the heavy precipitation occurred to the northeast of TC.For the two TC cases,the precipitation enhancement was also linked to the upper-level anomalous divergence associated with the jet-related forcing on the right side of the jet entrance.From the quasigeostrophic perspective,the advection of geostrophic absolute vorticity by the thermal wind most likely served as an indication reflecting the displacement of the vertical motion relative to the center of the TC.
基金The project was financially supported by the National Science Foundation of China (59871039)
文摘A computer simulation study on dynamics for the precipitation of δ'(Al_3Li) ordered particles from a disor- dered matrix (α) in binary Al-Li alloys is performed using the microscopic Langevin equation. A unique precipitation mechanism is found near the ordering spinodal line. Different from the classical nucleation mechanism in the me- tastable region and the congruent ordering followed by spinodal decomposition in the instable region, a nonstoichi- ometric single ordered phase with composition fluctuations is formed by non-classical nucleation, and this ordered phase decomposes spinodally. It can be concluded that the precipitation dynamics of δ' phase from metastability to instability is gradual, and no sharp transition occurs near the mean-field spinodal line as the mean-field theory pre- dicts.
基金National Natural Science Foundation of China(51905536)Natural Science Foundation of Tianjin(22JCYBJC01280)Key Project of Natural Science of Fundamental Research Funds for the Central Universities of China(3122023039).
文摘This paper investigated on influence of different alloying elements added into duplex stainless steel (DSS) on phase transitions using thermochemical methods in comparison with experiment.The results showed that the most possible species in the ferrite phase,austenite phase,σphase,Hcp phase,χphase,and carbide were Cr:Va-type,Fe:Va-type,Ni:Cr:Mo-type,Cr_(2)N-type,Fe_(24)Mo_(10)Cr_(24)-type,and Cr:Mo:C-type,respectively.Furthermore,the Ni,N,Cr,and Mo alloying had significant influences on the transition of each DSS phase.The Ni and N additions obviously raised the temperature at ferrite-1/austenite-1 balance while the Cr and Mo decreased the dual-phase balance temperature.In addition,the Ni addition can promote the precipitating ofσphase at relatively high temperature while the precipitating of Hcp phase at relatively low temperature.The Hcp phase andχphase can be obviously increased by the N addition.The introduction of Cr and Mo notably enhances the precipitation ofσphase.However,the promotion ofχphase precipitation is facilitated by the presence of Mo,while the Cr element acts as an inhibitor forχphase precipitation.Furthermore,the ferrite/austenite ratio tested by experiment was higher than that calculated by thermochemical methods,thus pre-designed solution temperature should be lower about 30-100℃than that calculated by thermochemical methods.
基金This work was supported by National Key R&D Program of China(No.2021YFA1501700)National Natural Science Foundation of China(No.52025031,52203016,and 22261142664)USTC Research Funds of the Double First-Class Initiative(YD9990002018).
文摘Ultra-high-molecular-weight polyethylene(UHMWPE)plays an important role in many important fields as engineering plastics.In this contribution,a precipitation polymerization strategy is developed by combination of highly active phosphino-phenolate nickel catalysts with polymer-insoluble solvent(heptane)to access UHMWPE(Mn up to 8.3×10^(6)g mol^(-1))with good product morphology,free-flowing characteristics,and great mechanical properties.Compared with the academically commonly used aromatic solvent(toluene),the utilization of heptane offers simultaneous enhancement in important parameters including activity,polymer molecular weight,and catalyst thermal stability.This system can also generate polar functionalized UHMWPE with molecular weight of up to 1.6×10^(6)g mol^(-1)in the copolymerization of ethylene with polar comonomers.More importantly,this precipitation polymerization strategy is generally applicable to several representative transition metal catalyst systems,leading to UHMWPE synthesis with good product morphology control.
文摘A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.
基金Supported by the National Natural Science Foundation of China (No.10272029).
文摘Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-perature and the amount of solid precipitated in the different conditions. A modified thermodynamic solid-liquid equilibrium model to calculate wax precipitation in crude oil systems has been developed recently. The assumption that precipitated waxes consist of several solid phases is adopted in this research, and the solid-solid transition is also considered in the modified model. The properties of the pseudo-components are determined by using empirical correlations. New correlations for properties of solid-solid and solid-liquid transitions are also established in this work on the basis of the data from the literature. The results predicted by the proposed model for three crude oil systems are compared with the experimental data and the calculated results from the literature, and good agreement is observed.
基金supported by the Korea Foundation for International Cooperation of Science and Technology (KICOS) througha grant provided by the Korean Ministry of Science and Technology (MOST) in 2009, and the Grant of NIMR-2009-B-2 at the National Institute of Meteorological Research, Korea Meteorological Administration
文摘In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China. The wet and dry spells between Seoul (southern China) and northern China are out-of-phase (out-of-phase) at the quasi-60-year timescale, and in-phase (out-of-phase by approximately 90 ? before 1900 and in-phase after 1900) at the quasi-40-year timescale. In particular, during the last century, the dominant long-term timescales over East Asia tend to decrease from the quasi-60-year to the quasi-40-year with increasing time. The dominant quasi-40-year and quasi-60-year timescales of the Seoul precipitation in Korea are strongly correlated with these timescales of the northern Pacific Ocean.
基金National Program on Key Basic Research Project "973" Program (2009CB421502)R&D Special Fund for Public Welfare Industry (Meteorology) (GYHY201206005)+1 种基金Natural Science Foundation of China (40730948,40921160381,41175087,40830958,40905029,40875039)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This study introduces a new dynamical quantity, shear gradient vorticity (SGV), which is defined as vertical wind shear multiplying the horizontal component of vorticity gradient, aiming to diagnose heavy precipitation induced by some strong convective weather systems. The vorticity gradient component can be used to study the collision or merging process between different vortexes or the deformation of a vortex with a sharp vorticity gradient. Vertical wind shear, another contributed component of SGV, always represents the environmental dynamical factor in meteorology. By the combined effect of the two components, overall, SGV can represent the interaction between the environmental wind shear and the evolution of vortexes with a large vorticity gradient. Other traditional vorticity-like dynamical quantities (such as helicity) have the limitation in the diagnosis of the convection, since they do not consider the vorticity gradient. From this perspective, SGV has the potential to diagnose some strong convective weather processes, such as Extratropical Transition (ET) of tropical cyclones and the evolution of multicell storms. The forecast performance of SGV for the numerical ET case of Typhoon Toraji (0108) has been evaluated. Compared with helicity, SGV has shown a greater advantage to forecast the distribution of heavy precipitation more accurately, especially in the frontal zone.
基金funded by the German Research Foundation(DFG)(Grant No.NA 330/20e1).
文摘An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the increase of the elastic stiffness,the change of the yield surface due to MICP cementation and the degradation of calcium carbonate bonds during shearing.Specifically,to capture the typical contraction-dilation transition in MICP soils,the original volumetric hardening rule in the MCC model is modified to a combined deviatoric and volumetric hardening rule.The model could reproduce a series of drained triaxial tests on MICP-treated soils with different calcium carbonate contents.Further,we carry out a parametric study and observe numerical instability in some cases.In combination with an analytical analysis,our numerical modelling has identified the benefits and limitations of using MCCbased models in the simulation of MICP-cemented soils,leading to suggestions for further model development.
基金National Natural Science Foundation of China,No.U23A2020National Science and Technology Basic Resource Investigation Program,No.2023FY100701。
文摘In the context of global warming,escalating water cycles have led to a surge in drought frequency and severity.Yet,multidecadal fluctuations in drought and their multifaceted influencing factors remain inadequately understood.This study examined the multidecadal changes in drought characteristics(frequency,duration,and severity)and their geographical focal points within China's north-south transitional zone,the Qinling-Daba Mountains(QDM),from 1960 to 2017 using the Standardized Precipitation Evapotranspiration Index(SPEI).In addition,a suite of eight scenarios,correlation analysis,and wavelet coherence were used to identify the meteorological and circulation factors that influenced drought characteristics.The results indicate the following:(1)From 1960 to 2017,the QDM experienced significant interdecadal variations in drought frequency,duration,and severity,the climate was relatively humid before the 1990s,but drought intensified thereafter.Specifically,the 1990s marked the period of the longest drought duration and greatest severity,while the years spanning 2010 to 2017 experienced the highest frequency of drought events.(2)Spatially,the Qinling Mountains,particularly the western Qinling Mountain,exhibited higher drought frequency,duration,and severity than the Daba Mountains.This disparity can be attributed to higher rates of temperature increase and precipitation decrease in the western Qinling Mountain.(3)Interdecadal variations in droughts in the QDM were directly influenced by the synergistic effects of interdecadal fluctuations in air temperature and precipitation.Circulation factors modulate temperature and precipitation through phase transitions,thereby affecting drought dynamics in the QDM.The Atlantic Multidecadal Oscillation emerges as the primary circulation factors influencing temperature changes,with a mid-1990s shift to a positive phase favoring warming.The East Asian Summer Monsoon and El Ni?o-Southern Oscillation are the main circulation factors affecting precipitation changes,with positive phase transitions associated with reduced precipitation,and vice versa for increased precipitation.
基金State Key Research Development Programme of China,Grant/Award Number:2021YFB3800702National Natural Science Foundation of China,Grant/Award Number:21902073+1 种基金Shenzhen Science and Technology Innovation Committee,Grant/Award Number:JSGG20210629144802007Post-Doctoral Later-Stage Foundation Project of Shenzhen Polytechnic,Grant/Award Number:6021271003K。
文摘The precipitate and the coacervate are two aggregated states in the polyelectrolyte complexes(PECs).The precipitate-to-coacervate transition and glass transition in PECs have been widely reported in the past.In many cases,the two phenomena are studied independently,although both of them are apparently affected by water and small ions.Here,utilizing a PEC system consisting of poly(acrylic acid)(PAA)and a cationic bolaamphiphile(DBON),we explore the states of PECs as a function of salt,temperature,and the molecular weight of PAAs.By a combination of microscopic observation,time-resolved fluorescence measurements,and differential scanning calorimetry,we identify salt/temperature driven precipitate-to-coacervate transitions of the complexes.The thermally induced morphology transformation from the precipitate to coacervate occurs around the glass transition temperature,indicating a strong correlation between the two processes.As the molecular weight of the PAA increases,the thermal transition temperature becomes higher.This finding offers new insights on the mechanistic interactions that dictate the aggregated states of PECs.Based on the photothermal effect of DBON,we also develop a UV light-induced strategy to mediate the precipitate-to-coacervate transition,providing a fantastic platform to create functional PEC materials.
基金financially supported by the National Natural Science Foundation of China (Nos. 51504048, 51611130062, 51874059 and 51874060)the Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0647)the Fundamental Research Funds for the Central Universities of China (No. cqu2018CDHB1B05)
文摘Segregation and inclusion precipitation are the common behaviours of steel solidification, which are resulted from the redistribution and diffusion of the solute elements at the solid-liquid interface. The effect of the phase transition of high-sulfur free-cutting steel is quantified in the present work for the solute partition coefficient(ki), inclusion precipitation, and microsegregation by establishing a coupling model of microsegregation and inclusion precipitation, wherein the quantified dependencies of ki in terms of temperature, phase and carbon(C) content were applied. Results showed that the solidification temperature range and phase transition of high-sulfur steel that under different solidification paths and C contents were quite different, leading to differences in ki and eventually in microsegregation. kC,kP, and kS were mainly affected by phase composition and kSi was primarily by temperature, while kMn depended on both phase composition and temperature during solidification. Increasing the C content within the interval 0.07-0.48 wt%, the ‘proportion of the δ phase maintained temperature region during solidification’(Pδ), kave Pand kave S(kiave, the average value of the ki across the whole stages of solidification)decreased monotonically, whereas kave Cincreased linearly. The peritectic reaction impacted on the phase composition and ki, leading to the change in microsegregation. Such effect of the peritectic reaction was more significant at the last stage of solidification. When the Pδ was between 75% and 100%(corresponding to 0.07-0.16 wt% C), the solidification path resulted in a greater effect on the microsegregation of solutes C, P, and S because of the peritectic reaction. The microsegregation of solutes Mn and S were comprehensively influenced by kMn, kS and Mn S precipitation as well. The studies would help reveal the solute redistribution at the solid-liquid interface, and improve the segregation of high-sulfur steel by controlling the solidification and precipitation in practice.
基金financially supported by VANITECNSFC(No.50971137.)
文摘Two kinds of low-carbon low-silicon TRIP (Transformation Induced Plasticity) steels containing vanadium are designed using ThermoCalc software in the light of both thermodynamics and kinetics.TRIP heat treatment process of different steels is determined according to the calculation results respectively.Weld HAZ (Heat-Affected Zone) simulation tests indicate the weldability of TRIP steels is crucially sensitive to CE (carban equivelent) of the steel.However the impact toughness of CGHAZ (Coarse Grain Heat-Affected Zone) does not decrease drastically for TRIP steels microalloyed with Ti+V.The steel containing both of vanadium and titanium shows smaller grain size compared with that containing vanadium solely.This is because the precipitation of Ti/V carbonitride slows down the grain boundary motion speed and then retards the grain size coalescence in CGHAZ.