期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
1
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALING deep learning convolutional neural networks(CNNs)
下载PDF
Long-range precipitation forecasts using paleoclimate reconstructions in the western United States
2
作者 Christopher Allen CARRIER Ajay KALRA Sajjad AHMAD 《Journal of Mountain Science》 SCIE CSCD 2016年第4期614-632,共19页
Long-range precipitation forecasts are useful when managing water supplies.Oceanicatmospheric oscillations have been shown to influence precipitation.Due to a longer cycle of some of the oscillations,a short instrumen... Long-range precipitation forecasts are useful when managing water supplies.Oceanicatmospheric oscillations have been shown to influence precipitation.Due to a longer cycle of some of the oscillations,a short instrumental record is a limitation in using them for long-range precipitation forecasts.The influence of oscillations over precipitation is observable within paleoclimate reconstructions;however,there have been no attempts to utilize these reconstructions in precipitation forecasting.A data-driven model,KStar,is used for obtaining long-range precipitation forecasts by extending the period of record through the use of reconstructions of oscillations.KStar is a nearest neighbor algorithm with an entropy-based distance function.Oceanic-atmospheric oscillation reconstructions include the El Nino-Southern Oscillation(ENSO),the Pacific Decadal Oscillation(PDO),the North Atlantic Oscillation(NAO),and the Atlantic Multi-decadal Oscillation(AMO).Precipitation is forecasted for 20 climate divisions in the western United States.A 10-year moving average is applied to aid in the identification of oscillation phases.A lead time approach is used to simulate a one-year forecast,with a 10-fold cross-validation technique to test the models.Reconstructions are used from 1658-1899,while the observed record is used from 1900-2007.The model is evaluated using mean absolute error(MAE),root mean squared error(RMSE),RMSE-observations standard deviation ratio(RSR),Pearson's correlation coefficient(R),NashSutcliffe coefficient of efficiency(NSE),and linear error in probability space(LEPS) skill score(SK).The role of individual and coupled oscillations is evaluated by dropping oscillations in the model.The results indicate 'good' precipitation estimates using the KStar model.This modeling technique is expected to be useful for long-term water resources planning and management. 展开更多
关键词 precipitation Oscillations Paleoclimate reconstruction Forecast KStar
下载PDF
An application of the LTP_DSEF model to heavy precipitation forecasts of landfalling tropical cyclones over China in 2018 被引量:3
3
作者 Zuo JIA Fumin REN +5 位作者 Dalin ZHANG Chenchen DING Mingjen YANG Tian FENG Boyu CHEN Hui YANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第1期27-36,共10页
Recently, a track-similarity-based Dynamical-Statistical Ensemble Forecast(LTP_DSEF) model has been developed in an attempt to predict heavy rainfall from Landfalling Tropical cyclones(LTCs). In this study, the LTP_DS... Recently, a track-similarity-based Dynamical-Statistical Ensemble Forecast(LTP_DSEF) model has been developed in an attempt to predict heavy rainfall from Landfalling Tropical cyclones(LTCs). In this study, the LTP_DSEF model is applied to predicting heavy precipitation associated with 10 LTCs occurring over China in 2018. The best forecast scheme of the model with optimized parameters is obtained after testing 3452 different schemes for the 10 LTCs. Then, its performance is compared to that of three operational dynamical models. Results show that the LTP_DSEF model has advantages over the three dynamical models in predicting heavy precipitation accumulated after landfall, especially for rainfall amounts greater than 250 mm. The model also provides superior or slightly inferior heavy rainfall forecast performance for individual LTCs compared to the three dynamical models. In particular, the LTP_DSEF model can predict heavy rainfall with valuable threat scores associated with certain LTCs, which is not possible with the three dynamical models. Moreover, the model can reasonably capture the distribution of heavier accumulated rainfall, albeit with widespread coverage compared to observations. The preliminary results suggest that the LTP_DSEF model can provide useful forecast guidance for heavy accumulated rainfall of LTCs despite its limited variables included in the model. 展开更多
关键词 Landfalling tropical cyclones Heavy precipitation forecasts LTP DSEF model
原文传递
ON THE SENSITIVITY OF PRECIPITATION FORECASTS TO THE MOIST PHYSICS AND THE HORIZONTAL RESOLUTION OF NUMERICAL MODEL
4
作者 俞小鼎 Leif Laursen Erik Rasmussen 《Acta meteorologica Sinica》 SCIE 1997年第4期432-445,共14页
The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs (quantitative precipitation forecasts)are investigated by applying the HIRLAM(high resolution limited area model)to the sum... The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs (quantitative precipitation forecasts)are investigated by applying the HIRLAM(high resolution limited area model)to the summer heavy-rain cases in China.The performance of the control run, for which a 0.5°×0.5°grid spacing and a traditional“grid-box supersaturation removal+Kuo type convective paramerization”are used as the moist physics,is compared with that of the sensitivity runs with an enhanced model's moist physics(Sundqvist scheme)and an increased horizontal resolution(0.25°×0.25°),respectively.The results show: (1)The enhanced moist physics scheme(Sundqvist scheme),by introducing the cloud water content as an additional prognostic variable and taking into account briefly of the microphysics involved in the cloud-rain conversion,does bring improvements in the model's QPFs.Although the deteriorated QPFs also occur occasionally,the improvements are found in the majority of the cases,indicating the great potential for the improvement of QPFs by enhancing the model's moist physics. (2)By increasing the model's horizontal resolution from 0.5°×0.5°,which is already quite high compared with that of the conventional atmospheric soundings,to 0.25°×0.25°without the simultaneous enhancement in model physics and objective analysis,the improvements in QPFs are very limited.With higher resolution,although slight amelioration in locating the rainfall centers and in resolving some finer structures of precipitation pattern are made,the number of the mis- predicted fine structures in rainfall field increases with the enhanced model resolution as well. 展开更多
关键词 quantitative precipitation forecasts(QPFs) moist physics RESOLUTION HIRLAM model(high resolution limited area model) heavy rain in China
原文传递
An Objective Approach to Generating Multi-Physics Ensemble Precipitation Forecasts Based on the WRF Model 被引量:1
5
作者 Chenwei SHEN Qingyun DUAN +4 位作者 Wei GONG Yanjun GAN Zhenhua DI Chen WANG Shiguang MIAO 《Journal of Meteorological Research》 SCIE CSCD 2020年第3期601-620,共20页
Selecting proper parameterization scheme combinations for a particular application is of great interest to the Weather Research and Forecasting(WRF)model users.This study aims to develop an objective method for identi... Selecting proper parameterization scheme combinations for a particular application is of great interest to the Weather Research and Forecasting(WRF)model users.This study aims to develop an objective method for identifying a set of scheme combinations to form a multi-physics ensemble suitable for short-range precipitation forecasting in the Greater Beijing area.The ensemble is created by using statistical techniques and some heuristics.An initial sample of 90 scheme combinations was first generated by using Latin hypercube sampling(LHS).Then,after several rounds of screening,a final ensemble of 40 combinations were chosen.The ensemble forecasts generated for both the training and verification cases using these combinations were evaluated based on several verification metrics,including threat score(TS),Brier score(BS),relative operating characteristics(ROC),and ranked probability score(RPS).The results show that TS of the final ensemble improved by 9%-33%over that of the initial ensemble.The reliability was improved for rain≤10 mm day^-1,but decreased slightly for rain>10 mm day^-1 due to insufficient samples.The resolution remained about the same.The final ensemble forecasts were better than that generated from randomly sampled scheme combinations.These results suggest that the proposed approach is an effective way to select a multi-physics ensemble for generating accurate and reliable forecasts. 展开更多
关键词 ensemble precipitation forecast Weather Research and Forecasting(WRF)model MULTI-PHYSICS verification BOOTSTRAPPING
原文传递
12 HOUR PRECIPITATION FORECASTS FOR NAIROBI,KENYA
6
作者 S.A.Hakeem 《Acta meteorologica Sinica》 SCIE 1992年第2期261-264,共4页
Radiosonde profiles of temperature and dewpoint temperature from one station are used to forecast 12-h precipita- tion over Nairobi,Kenya.The forecast scheme is based on statistical regression modelling.Four predictor... Radiosonde profiles of temperature and dewpoint temperature from one station are used to forecast 12-h precipita- tion over Nairobi,Kenya.The forecast scheme is based on statistical regression modelling.Four predictors are derived from data to use in a prognostic equation to get 12-h precipitation forecast.Observed and predicted rainfall values are plotted on a graph against time.Forecast verification shows that the forecasts are positively correlated with observations. 展开更多
关键词 precipitation forecast rainfall modelling 12-h precipitation forecast mesoscale rainfall forecast
原文传递
Seasonal Forecasts of Precipitation during the First Rainy Season in South China Based on NUIST-CFS1.0
7
作者 Sinong LI Huiping YAN Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1895-1910,共16页
Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy ... Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy season(FRS,i.e.,April–June)over South China from 1982 to 2020 based on the global real-time Climate Forecast System of Nanjing University of Information Science and Technology(NUIST-CFS1.0,previously known as SINTEX-F).The potential predictability and the practical forecast skill of NUIST-CFS1.0 for FRS precipitation remain low in general.But NUIST-CFS1.0 still performs better than the average of nine international models in terms of correlation coefficient skill in predicting the interannual precipitation anomaly and its related circulation index.NUIST-CFS1.0 captures the anomalous Philippines anticyclone,which transports moisture and heat northward to South China,favoring more precipitation in South China during the FRS.By examining the correlations between sea surface temperature(SST)and FRS precipitation and the Philippines anticyclone,we find that the model reasonably captures SST-associated precipitation and circulation anomalies,which partly explains the predictability of FRS precipitation.A dynamical downscaling model with 30-km resolution forced by the large-scale circulations of the NUIST-CFS1.0 predictions could improve forecasts of the climatological states and extreme precipitation events.Our results also reveal interesting interdecadal changes in the predictive skill for FRS precipitation in South China based on the NUIST-CFS1.0 hindcasts.These results help improve the understanding and forecasts for FRS precipitation in South China. 展开更多
关键词 seasonal forecast of precipitation first rainy season in South China global climate model prediction
下载PDF
Improving the Short-Range Precipitation Forecast of Numerical Weather Prediction through a Deep Learning-Based Mask Approach
8
作者 Jiaqi ZHENG Qing LING +1 位作者 Jia LI Yerong FENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1601-1613,共13页
Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of ... Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of short-range precipitation forecasting,we propose a deep learning-based approach called UNet Mask,which combines NWP forecasts with the output of a convolutional neural network called UNet.The UNet Mask involves training the UNet on historical data from the NWP model and gridded rainfall observations for 6-hour precipitation forecasting.The overlap of the UNet output and the NWP forecasts at the same rainfall threshold yields a mask.The UNet Mask blends the UNet output and the NWP forecasts by taking the maximum between them and passing through the mask,which provides the corrected 6-hour rainfall forecasts.We evaluated UNet Mask on a test set and in real-time verification.The results showed that UNet Mask outperforms the NWP model in 6-hour precipitation prediction by reducing the FAR and improving CSI scores.Sensitivity tests also showed that different small rainfall thresholds applied to the UNet and the NWP model have different effects on UNet Mask's forecast performance.This study shows that UNet Mask is a promising approach for improving rainfall forecasting of NWP models. 展开更多
关键词 deep learning numerical weather prediction(NWP) 6-hour quantitative precipitation forecast
下载PDF
Synoptic Verification of Precipitation Forecast of Three NWP Models from May to August of 2008 in Liaoning Province 被引量:5
9
作者 崔锦 周小珊 +1 位作者 陈力强 张爱忠 《Meteorological and Environmental Research》 CAS 2010年第8期7-11,20,共6页
In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products fo... In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products for forecasters,the synoptic verifications of their 12 h accumulated precipitation forecasts of 3 numerical modes from May to August in 2008 were made on the basis of different systems impacting weather in Liaoning Province.The time limitations were 24,36,48 and 60 h.The verified contents included 6 aspects such as intensity and position of precipitation center,intensity,location,scope and moving velocity of precipitation main body.The results showed that the three models had good forecasting capability for precipitation in Liaoning Province,but the cupacity of each model was obviously different. 展开更多
关键词 Numerical model precipitation forecast Synoptic meteorology verification China
下载PDF
Seasonal Prediction of Summer Precipitation over East Africa Using NUIST-CFS1.0 被引量:2
10
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第3期355-372,553-557,共23页
East Africa is particularly vulnerable to precipitation variability, as the livelihood of much of the population depends on rainfed agriculture. Seasonal forecasts of the precipitation anomalies, when skillful, can th... East Africa is particularly vulnerable to precipitation variability, as the livelihood of much of the population depends on rainfed agriculture. Seasonal forecasts of the precipitation anomalies, when skillful, can therefore improve implementation of coping mechanisms with respect to food security and water management. This study assesses the performance of Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUISTCFS1.0) on forecasting June–September(JJAS) seasonal precipitation anomalies over East Africa. The skill in predicting the JJAS mean precipitation initiated from 1 May for the period of 1982–2019 is evaluated using both deterministic and probabilistic verification metrics on grid cell and over six distinct clusters. The results show that NUIST-CFS1.0 captures the spatial pattern of observed seasonal precipitation climatology, albeit with dry and wet biases in a few parts of the region. The model has positive skill across a majority of Ethiopia, Kenya, Uganda, and Tanzania, whereas it doesn’t exceed the skill of climatological forecasts in parts of Sudan and southeastern Ethiopia. Positive forecast skill is found over regions where the model shows better performance in reproducing teleconnections related to oceanic SST. The prediction performance of NUIST-CFS1.0 is found to be on a level that is potentially useful over a majority of East Africa. 展开更多
关键词 East Africa seasonal precipitation forecasts probabilistic verification ensemble prediction
下载PDF
Improving the Seasonal Forecast of Summer Precipitation in China Using a Dynamical-Statistical Approach 被引量:3
11
作者 JIA Xiao-Jing ZHU Pei-Jun 《Atmospheric and Oceanic Science Letters》 2010年第2期100-105,共6页
A dynamical-statistical post-processing approach is applied to seasonal precipitation forecasts in China during the summer.The data are ensemble-mean seasonal forecasts in summer (June August) from four atmospheric ge... A dynamical-statistical post-processing approach is applied to seasonal precipitation forecasts in China during the summer.The data are ensemble-mean seasonal forecasts in summer (June August) from four atmospheric general circulation models (GCMs) in the second phase of the Canadian Historical Forecasting Project (HFP2) from 1969 to 2001.This dynamical-statistical approach is designed based on the relationship between the 500 geopotential height (Z500) forecast and the observed sea surface temperature (SST) to calibrate the precipitation forecasts.The results show that the post-processing can improve summer precipitation forecasts for many areas in China.Further examination shows that this post-processing approach is very effective in reducing the model-dependent part of the errors,which are associated with GCMs.The possible mechanisms behind the forecast's improvements are investigated. 展开更多
关键词 precipitation forecasts ensemble forecasts dynamical-statistical approach
下载PDF
The Impact of Assimilating Radar-estimated Rain Rates on Simulation of Precipitation in the 17-18 July 1996 Chicago Floods 被引量:2
12
作者 Xingbao WANG M. K. YAU +1 位作者 B. NAGARAJAN Luc FILLION 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第2期195-210,共16页
Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate... Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate derived from radar composite reflectivity has been proposed and tested in a numerical simulation of the Chicago floods of 17–18 July 1996. The methodology is based on the one-dimensional variation scheme (1DVAR) assimilation approach introduced by Fillion and Errico but applied here using the Kain-Fritsch convective parameterization scheme (KF CPS). The novel feature of this work is the continuous assimilation of radar estimated rain rate over a three hour period, rather than a single assimilation at the initial (analysis) time. Most of the characteristics of this precipitation event, including the propagation, regeneration of mesoscale convective systems, the frontal boundary across the Midwest and the evolution of the low-level jet are better captured in the simulation as the radar-estimated precipitation rate is assimilated. The results indicate that precipitation assimilation during the early stage can improve the simulated mesoscale feature of the convection system and shorten the spin-up time significantly. Comparison of precipitation forecasts between the experiments with and without the 1DVAR indicates that the 1DVAR scheme has a positive impact on the QPF up to 36 hours in terms of the bias and bias equalized threat scores. 展开更多
关键词 quantitative precipitation forecasts 1DVAR data assimilation
下载PDF
A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach 被引量:5
13
作者 冯业荣 David H.KITZMILLER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期405-414,共10页
A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimate... A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quan- titative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained. Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression. 展开更多
关键词 quantitative precipitation forecast BP neural network WSR-88D Doppler radar lightning strike rate infrared satellite data NGM model
下载PDF
A Case Study of Impact of FY-2C Satellite Data in Cloud Analysis to Improve Short-Range Precipitation Forecast 被引量:6
14
作者 LIU Rui-Xia CHEN Hong-Bin +1 位作者 CHEN De-Hui XU Guo-Qiang 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期527-533,共7页
Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were us... Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were used to initialize the Global/Regional Assimilation and Prediction System model(GRAPES) in China to predict precipitation in a rainstorm case in the country. Three prediction experiments were conducted and were used to investigate the impacts of FY-2C satellite data on cloud analysis of LAPS and on short range precipitation forecasts. In the first experiment, the initial cloud fields was zero value. In the second, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS without combining the satellite data. In the third experiment, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS including satellite data. The results indicated that the FY-2C satellite data combination in LAPS can show more realistic cloud distributions, and the model simulation for precipitation in 1–6 h had certain improvements over that when satellite data and complex cloud analysis were not applied. 展开更多
关键词 FY-2C satellite data cloud analysis precipitation forecast impact study
下载PDF
Quantitative Precipitation Forecast Experiment Based on Basic NWP Variables Using Deep Learning 被引量:6
15
作者 Kanghui ZHOU Jisong SUN +1 位作者 Yongguang ZHENG Yutao ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1472-1486,共15页
The quantitative precipitation forecast(QPF)performance by numerical weather prediction(NWP)methods depends fundamentally on the adopted physical parameterization schemes(PS).However,due to the complexity of the physi... The quantitative precipitation forecast(QPF)performance by numerical weather prediction(NWP)methods depends fundamentally on the adopted physical parameterization schemes(PS).However,due to the complexity of the physical mechanisms of precipitation processes,the uncertainties of PSs result in a lower QPF performance than their prediction of the basic meteorological variables such as air temperature,wind,geopotential height,and humidity.This study proposes a deep learning model named QPFNet,which uses basic meteorological variables in the ERA5 dataset by fitting a non-linear mapping relationship between the basic variables and precipitation.Basic variables forecasted by the highest-resolution model(HRES)of the European Centre for Medium-Range Weather Forecasts(ECMWF)were fed into QPFNet to forecast precipitation.Evaluation results show that QPFNet achieved better QPF performance than ECMWF HRES itself.The threat score for 3-h accumulated precipitation with depths of 0.1,3,10,and 20 mm increased by 19.7%,15.2%,43.2%,and 87.1%,respectively,indicating the proposed performance QPFNet improved with increasing levels of precipitation.The sensitivities of these meteorological variables for QPF in different pressure layers were analyzed based on the output of the QPFNet,and its performance limitations are also discussed.Using DL to extract features from basic meteorological variables can provide an important reference for QPF,and avoid some uncertainties of PSs. 展开更多
关键词 deep learning quantitative precipitation forecast permutation importance numerical weather prediction
下载PDF
Statistically Extrapolated Nowcasting of Summertime Precipitation over the Eastern Alps 被引量:4
16
作者 Min CHEN Benedikt BICA +2 位作者 Lukas TCHLER Alexander KANN Yong WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第7期925-938,共14页
This paper presents a new multiple linear regression(MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA(Integrated Nowcasting through Comprehensive Analysis) system fo... This paper presents a new multiple linear regression(MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA(Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps.The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples,and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure-amplitude-location scores, used to evaluate the performance of the MLR approach,based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting. 展开更多
关键词 precipitation forecast convective Eastern correction verification backward qualified degraded morning
下载PDF
Impact of assimilating FY-3C MWHS2 data in the RMAPS-ST forecast system on its rainfall forecasts 被引量:1
17
作者 Ruixia Liu Qifeng Lu +2 位作者 Min Chen Lu Mao Shuiyong Fan 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第4期29-37,共9页
In order to evaluate the impact of assimilating FY-3C satellite Microwave Humidity Sounder(MWHS2)data on rainfall forecasts in the new-generation Rapid-refresh Multi-scale Analysis and Prediction System–Short Term(RM... In order to evaluate the impact of assimilating FY-3C satellite Microwave Humidity Sounder(MWHS2)data on rainfall forecasts in the new-generation Rapid-refresh Multi-scale Analysis and Prediction System–Short Term(RMAPS-ST)operational system,which is developed by the Institute of Urban Meteorology of the China Meteorological Administration,four experiments were carried out in this study:(i)Coldstart(no observations assimilated);(ii)CON(assimilation of conventional observations);(iii)FY3(assimilation of FY-3C MWHS2 only);and(iv)FY3+CON(simultaneous assimilation of FY-3C MWHS2 and conventional observations).A precipitation process that took place in central-eastern China during 4–6 June 2019 was selected as a case study.When the authors assimilated the FY-3C MWHS2 data in the RMAPS-ST operational system,data quality control and bias correction were performed so that the O-B(observation minus background)values of the five humidity channels of MWHS2 became closer to a normal distribution,and the data basically satisfied the unbiased assumption.The results showed that,in this case,the predictions of both precipitation location and intensity were improved in the FY3+CON experiment compared with the other three experiments.Meanwhile,the prediction of atmospheric parameters for the mesoscale field was also improved,and the RMSE of the specific humidity forecast at the 850–400 hPa height was reduced.This study implies that FY-3C MWHS2 data can be successfully assimilated in a regional numerical model and has the potential to improve the forecasting of rainfall. 展开更多
关键词 FY-3C MWHS2 RMAPS-ST Data assimilation precipitation forecast
下载PDF
Application of the Physical Quantity Field Evolution under Numerical Model in Precipitation Forecast of Yantai 被引量:1
18
作者 SUN Dian-guang,HUANG Ben-feng Yantai Meteorological Bureau in Shandong Province,Yantai 264003,China 《Meteorological and Environmental Research》 CAS 2011年第11期1-4,7,共5页
[Objective] The research aimed to understand role of the forecast data about physical quantity field in precipitation forecast.[Method] By contrasting forecast and actual situation of the precipitation in Yantai durin... [Objective] The research aimed to understand role of the forecast data about physical quantity field in precipitation forecast.[Method] By contrasting forecast and actual situation of the precipitation in Yantai during 2-3 July and 12-15 September,2011,advantages and disadvantages of the different numerical forecast models (Japan fax chart,European center,MM5,Grapes and T639) were analyzed.[Result] MICAPS system could provide live situation of the physical quantity field,but couldn't provide the future evolution situation.Japan fax chart,European center,MM5,Grapes and T639 could provide future evolution situation of the physical quantity field.[Conclusion] The contrasts and analyses on forecast situations of the physical quantity fields in many precipitation processes showed that evolutions of the vertical velocity,temperature dew point difference,relative humidity and wind field at the different heights could improve forecast accuracy of the precipitation in Yantai. 展开更多
关键词 Numerical model Evolution of the physical quantity field Application of precipitation forecast China
下载PDF
Test and Evaluation of ECMWF Model on Precipitation Forecast in Shaoyang Area 被引量:1
19
作者 Xiahua XIAO Gang XIANG +2 位作者 Chenghao YU Zuoyang TANG Yaqiong TANG 《Meteorological and Environmental Research》 CAS 2021年第6期40-42,共3页
Using actual precipitation in Shaoyang of 2018-2020,precipitation forecast of ECMWF model was tested.The results showed that winter accuracy rate was the highest,followed by autumn,and summer accuracy rate was the low... Using actual precipitation in Shaoyang of 2018-2020,precipitation forecast of ECMWF model was tested.The results showed that winter accuracy rate was the highest,followed by autumn,and summer accuracy rate was the lowest.24-h TS scoring results showed that the shorter the cumulative time,the lower the TS.Forecasters had a strong ability to predict summer rainstorms. 展开更多
关键词 ECMWF model precipitation forecast Model error Inspection and evaluation
下载PDF
Impact of Soil Moisture Uncertainty on Summertime Short-range Ensemble Forecasts 被引量:1
20
作者 Jiangshan ZHU Fanyou KONG +3 位作者 Xiao-Ming HU Yan GUO Lingkun RAN Hengchi LEI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第7期839-852,共14页
To investigate the impact of soil moisture uncertainty on summertime short-range ensemble forecasts(SREFs), a fivemember SREF experiment with perturbed initial soil moisture(ISM) was performed over a northern Chin... To investigate the impact of soil moisture uncertainty on summertime short-range ensemble forecasts(SREFs), a fivemember SREF experiment with perturbed initial soil moisture(ISM) was performed over a northern China domain in summertime from July to August 2014. Five soil moisture analyses from three different operational/research centers were used as the ISM for the ensemble. The ISM perturbation produced notable ensemble spread in near-surface variables and atmospheric variables below 800 h Pa, and produced skillful ensemble-mean 24-h accumulated precipitation(APCP24) forecasts that outperformed any single ensemble member. Compared with a second SREF experiment with mixed microphysics parameterization options, the ISM-perturbed ensemble produced comparable ensemble spread in APCP24 forecasts, and had better Brier scores and resolution in probabilistic APCP24 forecasts for 10-mm, 25-mm and 50-mm thresholds. The ISM-perturbed ensemble produced obviously larger ensemble spread in near-surface variables. It was, however, still under-dispersed, indicating that perturbing ISM alone may not be adequate in representing all the uncertainty at the near-surface level, indicating further SREF studies are needed to better represent the uncertainties in land surface processes and their coupling with the atmosphere. 展开更多
关键词 ensemble forecast soil moisture perturbation probabilistic quantitative precipitation forecast
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部