Deformation-induced ferrite transformation (DIFT) has been proved to be an effective approach to refine ferrite grains. This paper shows that the ferrite grains can further be refined through combination of DIFT and...Deformation-induced ferrite transformation (DIFT) has been proved to be an effective approach to refine ferrite grains. This paper shows that the ferrite grains can further be refined through combination of DIFT and V or V-N microalloying. Vanadium dissolved in γ matrix restrains DIFT. During deformation, vanadium carbonitrides rapidly precipitate due to strain-induced precipitation, which causes decrease in vanadium dissolved in matrix and indirectly accelerates DIFT. Under heavy deformation, deformation induced ferrite (DIF) grains in V microalloyed steel were finer than those in V free steel. The more V added to steel, the finer DIF grains obtained. Moreover, the addition of N to V microalloyed steels can remarkably accelerate precipitation of V, and then promote DIFT. However, DIF grains in V-N microalloyed steel easily coarsen.展开更多
As-extruded Mg-6Zn(wt.%)Alloy was subjected to severe plastic deformation(SPD)by the equal-channel angular pressing(ECAP)at 160 ℃.The results of tensile tests at room temperature showed that two passes ECAP resulted ...As-extruded Mg-6Zn(wt.%)Alloy was subjected to severe plastic deformation(SPD)by the equal-channel angular pressing(ECAP)at 160 ℃.The results of tensile tests at room temperature showed that two passes ECAP resulted in a remarkable improvement of strength,yield strength from 200 to 265 MPa and ultimate tensile strength from 260 to 340 MPa.However,with the deformation increasing,the samples processed by ECAP for four or six passes had insignificant difference than that processed by two-pass ECAP.Massive precipitates were observed in all the Mg-6Zn alloys specimens processed by ECAP.Transmission electron microscope and X-ray diffraction results indicated that ECAP treatment induced the precipitation of laves MgZn_(2) phase and transition Mg_(4)Zn_(7) phase.The spherical MgZn_(2) particles and irregular shape Mg_(4)Zn_(7) particles coexist in the microstructure of Mg-6Zn alloy after six pass ECAP.展开更多
Hot deformation processing was designed to study the effects of niobium (Nb) on DIFT. A prestrain of 0.51 at 880 ℃ for different isothermal time was used for adjusting the deformed austenite constitution and Nb exi...Hot deformation processing was designed to study the effects of niobium (Nb) on DIFT. A prestrain of 0.51 at 880 ℃ for different isothermal time was used for adjusting the deformed austenite constitution and Nb existing state, followed by a secondary heavy deformation at 780 ℃ for inducing the ferrite transformation. The volume fraction and grain size of deformation induced ferrite (DIF) obtained at different isothermal time between double hits were investigated. It was found that Nb dissolved in austenite is adverse to DIFT; however, the precipitation of Nb is beneficial to DIFT. As Nb plays the role in the conventional TMCP, Nb retards the recrystallization of deformed austenite and enhances the deformation stored energy in the multipass deformation, and in result, Nb promotes DIFT.展开更多
Influence of deformation twinning on high-temperature instantaneous performance of cold-rolled S31042 steel was investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, and h...Influence of deformation twinning on high-temperature instantaneous performance of cold-rolled S31042 steel was investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, and high-temperature tensile test. An increasing number of deformation twins have formed as the cold rolling reduction degree increases during the cold rolling process. During the tensile process at 700 ℃, M23C6 particles generated along the deformation twin boundaries, and NbCrN nanoparticles dispersedly precipitated throughout the austenite grains. For the high-temperature tensile sample subjected to cold reduction for 80%, it is observed from the fractured cross section that numerous defor-mation twin boundaries were decorated by discontinuous M23C6 particles. Therefore, austenite grains were divided into several independent zones by the deformation twins, and the grains were refined. Due to the grain refinement strengthening and precipitation strengthening, the high-temperature temporal strength of the 80% cold-rolled sample was significantly improved, and simultaneously, this sample exhibited favorable high-temperature elongation.展开更多
To study the precipitation dynamics of 3 phase in Inconel 718 alloy, two-stage interrupted compression method was used in the region of cold deformation temperatures and the temperatures range from 875 to 975 ℃. The ...To study the precipitation dynamics of 3 phase in Inconel 718 alloy, two-stage interrupted compression method was used in the region of cold deformation temperatures and the temperatures range from 875 to 975 ℃. The precipitation-time-temperature (PTT) curve of 3 phase was obtained by analyzing the softening kinetics curves. For verifying the type of the precipitates and confirming the validity of the test, the transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and energy dispersion spectrum (EDS) were em- ployed. Experimental results indicated that the PTT curve for 3 precipitation exhibited a typical "C" shape and the nose points of start and finish precipitation were about 5 s at 920 ℃ and 2 815 s at 940 ℃, respectively. In addition, the nucleation of δ was heterogeneous. The nucleation sites varied with temperatures, including dislocation, grain boundary and stacking fault within γ″ phase. And 3 particles grew quickly at higher temperature with lower density. Moreover, the driving force of nucleation was mainly including chemical free energy, interracial energy and disloca- tion distorted energy. And the dislocation distorted energy could decide the density of nucleation in the strain-induced process.展开更多
文摘Deformation-induced ferrite transformation (DIFT) has been proved to be an effective approach to refine ferrite grains. This paper shows that the ferrite grains can further be refined through combination of DIFT and V or V-N microalloying. Vanadium dissolved in γ matrix restrains DIFT. During deformation, vanadium carbonitrides rapidly precipitate due to strain-induced precipitation, which causes decrease in vanadium dissolved in matrix and indirectly accelerates DIFT. Under heavy deformation, deformation induced ferrite (DIF) grains in V microalloyed steel were finer than those in V free steel. The more V added to steel, the finer DIF grains obtained. Moreover, the addition of N to V microalloyed steels can remarkably accelerate precipitation of V, and then promote DIFT. However, DIF grains in V-N microalloyed steel easily coarsen.
基金support from The national natural science foundation of China(Grant No.51301151)Jiangsu province natural science foundation of China(Grant No.BK20130447).
文摘As-extruded Mg-6Zn(wt.%)Alloy was subjected to severe plastic deformation(SPD)by the equal-channel angular pressing(ECAP)at 160 ℃.The results of tensile tests at room temperature showed that two passes ECAP resulted in a remarkable improvement of strength,yield strength from 200 to 265 MPa and ultimate tensile strength from 260 to 340 MPa.However,with the deformation increasing,the samples processed by ECAP for four or six passes had insignificant difference than that processed by two-pass ECAP.Massive precipitates were observed in all the Mg-6Zn alloys specimens processed by ECAP.Transmission electron microscope and X-ray diffraction results indicated that ECAP treatment induced the precipitation of laves MgZn_(2) phase and transition Mg_(4)Zn_(7) phase.The spherical MgZn_(2) particles and irregular shape Mg_(4)Zn_(7) particles coexist in the microstructure of Mg-6Zn alloy after six pass ECAP.
基金Item Sponsored by National Key Technologies Research and Development Program of China(G1998061502)
文摘Hot deformation processing was designed to study the effects of niobium (Nb) on DIFT. A prestrain of 0.51 at 880 ℃ for different isothermal time was used for adjusting the deformed austenite constitution and Nb existing state, followed by a secondary heavy deformation at 780 ℃ for inducing the ferrite transformation. The volume fraction and grain size of deformation induced ferrite (DIF) obtained at different isothermal time between double hits were investigated. It was found that Nb dissolved in austenite is adverse to DIFT; however, the precipitation of Nb is beneficial to DIFT. As Nb plays the role in the conventional TMCP, Nb retards the recrystallization of deformed austenite and enhances the deformation stored energy in the multipass deformation, and in result, Nb promotes DIFT.
基金The authors would like to acknowledge the National Natural Science Foundation of China (Granted Nos. 51325401, 51474156 and U1660201)the National Magnetic Confinement Fusion Energy Research Program (No. 2015GB119001) for Grant and financial support.
文摘Influence of deformation twinning on high-temperature instantaneous performance of cold-rolled S31042 steel was investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, and high-temperature tensile test. An increasing number of deformation twins have formed as the cold rolling reduction degree increases during the cold rolling process. During the tensile process at 700 ℃, M23C6 particles generated along the deformation twin boundaries, and NbCrN nanoparticles dispersedly precipitated throughout the austenite grains. For the high-temperature tensile sample subjected to cold reduction for 80%, it is observed from the fractured cross section that numerous defor-mation twin boundaries were decorated by discontinuous M23C6 particles. Therefore, austenite grains were divided into several independent zones by the deformation twins, and the grains were refined. Due to the grain refinement strengthening and precipitation strengthening, the high-temperature temporal strength of the 80% cold-rolled sample was significantly improved, and simultaneously, this sample exhibited favorable high-temperature elongation.
文摘To study the precipitation dynamics of 3 phase in Inconel 718 alloy, two-stage interrupted compression method was used in the region of cold deformation temperatures and the temperatures range from 875 to 975 ℃. The precipitation-time-temperature (PTT) curve of 3 phase was obtained by analyzing the softening kinetics curves. For verifying the type of the precipitates and confirming the validity of the test, the transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and energy dispersion spectrum (EDS) were em- ployed. Experimental results indicated that the PTT curve for 3 precipitation exhibited a typical "C" shape and the nose points of start and finish precipitation were about 5 s at 920 ℃ and 2 815 s at 940 ℃, respectively. In addition, the nucleation of δ was heterogeneous. The nucleation sites varied with temperatures, including dislocation, grain boundary and stacking fault within γ″ phase. And 3 particles grew quickly at higher temperature with lower density. Moreover, the driving force of nucleation was mainly including chemical free energy, interracial energy and disloca- tion distorted energy. And the dislocation distorted energy could decide the density of nucleation in the strain-induced process.
基金supported by the National Natural Science Foundation of China(No.52071035)Guangdong Major Project of Basic and Applied Basic Research,China(No.2020B0301030006)。