To study the precipitation mechanism of α-Cr phase in Inconel 718 alloy, the samples after long-time aging at 650 and 677℃ were examined by microstructural observations and chemical phase analysis methods. Combining...To study the precipitation mechanism of α-Cr phase in Inconel 718 alloy, the samples after long-time aging at 650 and 677℃ were examined by microstructural observations and chemical phase analysis methods. Combining the thermodynamics and kinetics calculation results, α-Cr always precipitates in the vicinity of δ phase, because δ phase rejects Cr into the γ-matrix when growing. The selected area diffraction patterns confirm that the crystallographic relationships of α-Cr with 6 phase are (010)d/(1- 10)a.Cr and [100]d/If 11 ]α-Cr- A graphic model is also presented to show the crystallographic relation between α-Cr and δ phases.展开更多
The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization origi...The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.展开更多
The characteristics and generation mechanism of(Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of(Ti,Nb,V)(C,N) phases exist—a Ti-V-r...The characteristics and generation mechanism of(Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of(Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich(Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2–5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of(Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is(Ti_(0.511)V_(0.356)Nb_(0.133))(CxNy), whereas that for the single Nb-rich phase is(Ti_(0.061)V_(0.263)Nb_(0.676))(C_xN_y). The calculation results based on the Scheil–Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.展开更多
Since titanium has high affinity for hydrogen and reacts reversibly with hydrogen,the precipitation of titanium hydrides in titanium and its alloys cannot be ignored.Two most common hydride precipitates in α-Ti matrix...Since titanium has high affinity for hydrogen and reacts reversibly with hydrogen,the precipitation of titanium hydrides in titanium and its alloys cannot be ignored.Two most common hydride precipitates in α-Ti matrix areγ-hydride and δ-hydride,however their mechanisms for precipitation are still unclear.In the present study,we find that both γ-hydride and δ-hydride phases with different specific orientations were randomly precipitated in the as-received hot forged commercially pure Ti.In addition,a large amount of the titanium hydrides can be introduced into Ti matrix with selective precipitation by using electrochemical treatment.Cs-corrected scanning transmission electron microscopy is used to study the precipitation mechanisms of the two hydrides.It is revealed that the γ-hydride and δ-hydride precipitations are both formed through slip+shuffle mechanisms involving a unit of two layers of titanium atoms,but the difference is that the γ-hydride is formed by prismatic slip corresponding to hydrogen occupying the octahedral sites of α-Ti,while the δ-hydride is formed by basal slip corresponding to hydrogen occupying the tetrahedral sites ofα-Ti.展开更多
Cassiterite(SnO_(2))is the main ore mineral of tin in magmatic-hydrothermal tin deposits,but tin transport and precipitation mechanisms from hydrothermal fluids remain poorly understood.We critically evalu-ated aqueou...Cassiterite(SnO_(2))is the main ore mineral of tin in magmatic-hydrothermal tin deposits,but tin transport and precipitation mechanisms from hydrothermal fluids remain poorly understood.We critically evalu-ated aqueous tin speciation in hydrothermal fluids from extensive experimental data and thermody-namic modeling.Sn(II)chloride complexes in hydrothermal fluids exist mainly as SnCl^(+),SnCl_(2)(aq),and SnCl_(3).The revised Helgeson-Kirkham-Flowers model parameters of these three tin species and two tin ions(Sn^(4+) and Sn^(2+))were derived from the correlation algorithms among these parameters,and the standard molar properties of cassiterite were optimized to be internally consistent with the available thermodynamic dataset.These thermodynamic parameters,together with the available equilibrium con-stant equation of Sn(IV)chloride complexes,could reproduce the available solubility data of cassiterite in acidic solutions at 400-700℃under oxygen fugacity(f_(o2))levels buffered by hematite-magnetite(HM)or nickel-nickel oxide(NNO).These comparisons allow modeling chemical systems of SnO_(2)-NaCl-HCI-H_(2)O(liquid phase)to examine tin transport and cassiterite precipitation mechanisms under tin-mineralizing conditions:300--500℃,50-150 MPa,2 molal NaCI,and fo。levels from QFM(quartz-fayalite-magnetite)to HM.Sn(I)chloride complexes are commonly interpreted to dominate in aqueous tin speciation under f_(o2)=NNO,but our modeling results indicate that considerable contents of Sn(IV)chloride complexes also exist in those reduced fluids with high HCI contents,consistent with recent in situ high-temperature experiments and molecular dynamic simulations.The Sn(I)/Sn(IV)ratios in fluids depends onfo,temperature,and HCl contents.A considerable amount of Sn(IV)possibly exist in an early mineralization stage even under f_(o2)=NNO;if so,redox reactions are unnecessary to precipitate cassiterite from these mineralizing fluids.We find that even if the f_(o2) levels are constant,simple cooling can alter mineralizing fluids to be more oxidized(e.g.,from QFM to HM)and cause cassiterite precipitation,indicating that oxidizing agents are not necessary as previously thought.This explains why cassiterite can precipitate in host rocks(e.g.,sandstone or quartzite)that do not provide oxidizing agents.A simple rise in f_(o2),levels and pH neutralization(e.g.,greisenization)also cause cassiterite precipitation.Cassiterite solubility in oxidized acidic hydrothermal fluids(NNO<f_(o2),<HM)is high enough to account for the tin contents of fluid inclusions from typical tin deposits,but the mineralization potential of oxdized fluids is inferior to reduced fluids(f_(o2),≤NNO)under the same conditions.展开更多
The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercr...The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.展开更多
In order to improve the knowledge of the precipitation mechanism in martensitic steels containing carbon,XRD synchrotron experiments were performed. Firstly, the influence of Ni,Co and Al were studied and it was found...In order to improve the knowledge of the precipitation mechanism in martensitic steels containing carbon,XRD synchrotron experiments were performed. Firstly, the influence of Ni,Co and Al were studied and it was found that the precipitation of iron carbides occurs in same way as in Fe-C steel. However, with the addition of molybdenum and chromium in same steels, XRD synchrotron investigations clearly showed alloyed carbides directly precipitate, thereby preventing the iron carbides formation.展开更多
Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as ...Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as well as dead cells revealed that both extracellular adsorption and intracellular accumulation were involved in the Pb2+removal from the liquid phase. Of the sequestered Pb(II), 8.5% was held by physical entrapment within the cell wall, 43.3% was held by ion-exchange, 9.7% was complexed with cell surface functional groups or precipitated on the cell surface, and 38.5% was intracellularly accumulated.Complexation of Pb2+with carboxyl, hydroxyl, carbonyl, amido, and phosphate groups was demonstrated by Fourier transform infrared spectroscopic analysis. Precipitates of Pb5(PO4)3OH, Pb5(PO4)3Cl and Pb10(PO4)6(OH)2that formed on the cell surface during the biosorption process were identified by X-ray diffraction analysis. Transmission electron microscopy–energy dispersive spectroscopic analysis confirmed the presence of the Pb(II)precipitates and that Pb(II) could be sequestered both extracellularly and intracellularly.Incubation with B. subtilis DBM significantly decreased the amount of the weak-acid-soluble Pb fraction in a heavy-metal-contaminated soil, resulting in a reduction in Pb bioavailability, but increased the amount of its organic-matter-bound fraction by 71%. The ability of B.subtilis DBM to reduce the bioavailability of soil Pb makes it potentially useful for bacteria-assisted phytostabilization of multi-heavy-metal-contaminated soil.展开更多
In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) ...In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) were aged at 320 ℃for different time,respectively.The mechanical properties,electrical conductivity and microstructure of the alloy aged for different time were analyzed.Additionally,the precipitation kinetics of Cu-1.9Be-0.3Ni-0.15Co alloys was investigated.X-ray diffraction and transmission electron microscopy results reveal that both continuous precipitation and discontinuous precipitation existed in the hard-state Cu-l.9Be-0.3Ni-0.15Co alloy during the whole aging process;the sequence of continuous precipitation is G.P.zone →γ″→γ′→γ.Furthermore,the precipitation transformation mechanism of softstate alloy is homogeneous nucleation,while hard-state alloy shows the heterogeneous nucleation(interface nucleation)with the nucleation rate of both states decaying rapidly to zero during aging at 320 ℃.展开更多
The precipitation behavior of FeTiP in interstitial free high strength(IFHS)steels has been studied by using a transmission electron microscope(TEM).The results show that the TiC particles,appearing at earlier sta...The precipitation behavior of FeTiP in interstitial free high strength(IFHS)steels has been studied by using a transmission electron microscope(TEM).The results show that the TiC particles,appearing at earlier stage,are more stable than the FeTiP ones during recrystallization annealing at the two given temperatures(810℃ and 840℃).Therefore,the FeTiP particles can only be observed in the steels with sufficient amount of Ti.There is a critical forming time for the FeTiP,which is between 90-120 sat 810 ℃ and 60-90 sat 840 ℃.The precipitation of FeTiP involves two steps,i.e.the formation of FeTi precursors and the diffusion of P.The former step determines the reliance of Ti content for the precipitation of FeTiP,whereas the latter step leads to the difference in the critical annealing time.展开更多
Cerium-based oxide coatings can be obtained through either chemical or electrochemical processes on various conductor and semiconductor substrates. In both cases the films develop through a precipitation mechanism, wh...Cerium-based oxide coatings can be obtained through either chemical or electrochemical processes on various conductor and semiconductor substrates. In both cases the films develop through a precipitation mechanism, which strongly depends on the solution chemistry. In the particular case of the electrolytic approach, the elaboration parameters play a key role on the interfacial pH modification thereby leading to an indirect precipitation mechanism. Indeed, the nucleation and growth mechanisms of crystallites and the composition of the resulting layers have been shown to be also strongly affected by the deposition conditions as well as by the substrate composition, which could in turn modify the protectiveness provided by such coatings. Therefore a better fundamental understanding of the system is required, in particular of the distribution of cerium-containing species in aqueous solution. To this end, the present work intended to develop a diagram showing the distribution as well as the relative amount of Ce(Ⅲ)/Ce(Ⅳ) species in aqueous media as a fimction of the pH range. The resulting pH-distribution diagram turned out to be a useful tool to predict the relevant precipitation mechanisms and species involved during the growth of ceriuna-containing films and to draw correlations with the characteristics of the as-deposited films.展开更多
Hollow mesoporous TiO2 spheres(THs)were prepared via template-directed deposition of TiO2 nanoparticles on the surface of carbon spheres.The carbon spheres were used as hard templates.Their diameters were controlled b...Hollow mesoporous TiO2 spheres(THs)were prepared via template-directed deposition of TiO2 nanoparticles on the surface of carbon spheres.The carbon spheres were used as hard templates.Their diameters were controlled by pH adjustment prior to a hydrothermal process.Physical properties,such as crystallinity,optical characteristics,microstructure and surface morphology of the samples were characterized.The results showed that the diameter of the carbon template could be well controlled in the range of 397-729 nm by adjusting the initial pH value of the dextrose solution from 3 to 10.Hollow TiO2 spheres with average diameters ranging from 171 to 668 nm and shell thicknesses ranging from 28 to 47 nm formed by heat treatment at 450℃.The photocatalytic performance of hollow TiO2 spheres and TiO2 nanoparticles was examined under UVA irradiation using a methyl orange aqueous solution as an artificial dye.The study revealed that the THs synthesized using a dextrose solution at pH 7 had a higher photocatalytic activity compared to other samples since it had the lowest shell thickness and the proper optical band gap of 3.12 eV with the longest lifetime of electron-hole pair separation.展开更多
To investigate the effect of high temperature ageing on the microstructure and mechanical properties of S31042steel,solid solution treatment at 700℃ was carried out for various time from 10to 6 000h.Experimental resu...To investigate the effect of high temperature ageing on the microstructure and mechanical properties of S31042steel,solid solution treatment at 700℃ was carried out for various time from 10to 6 000h.Experimental results showed that the change of mechanical properties is closely related to the amount of precipitated phases.During ageing from 10to 300h,precipitation in the tested steel increases rapidly,and correspondingly,the high temperature yield strength and room temperature hardness of tested steel increase rapidly.Meanwhile,the thickness of the secondary phase on grain boundaries widens sharply and the room temperature Charpy impact absorb energy decreases.Ageing beyond 300h,the precipitation in the steel increases gradually and the precipitates coarsen to a certain extent.The high temperature yield strength of the steel keeps stable,and the room temperature Charpy impact energy and hardness decrease slowly.Ageing beyond 3 000h,the mechanical properties of the steel tend to be stable.The main precipitates are M23C6,NbCrN and NbC in the tested steel.展开更多
Ductility and electrical conductivity of metallic materials are inversely correlated with their strength,resulting in a difficulty of optimizing all three simultaneously. We design an Al-Sc-Zr-based alloy using semiso...Ductility and electrical conductivity of metallic materials are inversely correlated with their strength,resulting in a difficulty of optimizing all three simultaneously. We design an Al-Sc-Zr-based alloy using semisolid extrusion to yield a good trade-off between strength and ductility along with excellent electrical conductivity. The Al-0.35Sc-0.2Zr wire with a diameter of 3 mm exhibited the best combined properties: a tensile strength of 210 ± 2 MPa, elongation of 7.6% ± 0.5%, and an electrical conductivity of 34.9 ± 0.05 MS/m. The average particle size of nanosized Al3(Sc, Zr) precipitates increased from 6.5 ± 0.5 nm to 25.0 ± 0.5 nm as the aging time increased from 1 h to 96 h at 380 °C, accompanied by the corresponding volume fraction variation from(6.2 ± 0.1) × 10^(-4) to(3.7 ± 0.1) × 10^(-3). As proved by transmission electron microscopy observation, the high strength originates from the effective blockage of dislocation motion by numerous nanosized Al3(Sc, Zr) precipitates whilst both electrical conductivity and ductility remain at a high level due to the coherent precipitates possessing an extremely low electrical resistivity.展开更多
The effect of solution annealing on the microstructure and mechanical properties of a Ni-Cr-W-Fe alloy developed for advanced 700?C ultra-supercritical power plants was investigated. Test samples in this study were s...The effect of solution annealing on the microstructure and mechanical properties of a Ni-Cr-W-Fe alloy developed for advanced 700?C ultra-supercritical power plants was investigated. Test samples in this study were subjected to different solution treatments and the same aging treatment(at 760?C for 1 h).When solution annealing temperature was elevated from 1020?C to 1150?C, the stress-rupture life at750?C/320 MPa was increased from 60 h to 300 h, the stress-rupture elongation was enhanced from12% to 17%, and the elongation of the tensile at 750?C was improved from 11% to 24%. All tensile and stress-rupture samples displayed an intergranular dimple mixed fracture. Intergranular micro-cracks had a great relationship with the morphology of grain boundary carbides. Most carbides retained the morphology of globular shape and continuous thin plate. After tensile and stress-rupture tests, a few carbides were converted into lamellar. The results showed that intergranular micro-cracks were easier to form at continuous thin plate carbides than at globular shape carbides. Lamellar carbides hardly caused the nucleation of micro-cracks. Besides, grain boundaries sliding and elements diffusion during stressrupture tests led to the formation of precipitate free zones, which accelerated the extension of microcracks and influenced the stress-rupture life.展开更多
Mg-9Al-6Sn-3Zn (wt%) alloy was extruded and heat treated in T5 and T6 conditions, and its mechanical properties and microstructures were investigated. The extruded product can be slightly strengthened by the T5 trea...Mg-9Al-6Sn-3Zn (wt%) alloy was extruded and heat treated in T5 and T6 conditions, and its mechanical properties and microstructures were investigated. The extruded product can be slightly strengthened by the T5 treatment as a result of sparse and heterogeneous precipitation. Significant increase in strength is achieved by the T6 treatment, and this is mostly attributed to the formation of lamellar discontinuous Mg17Al12 precipitates. The segregation of Al and Zn at grain boundaries is responsible for the discontinuous Mg17Al12 nucleation. The T6-treated alloy exhibits a tensile yield strength of 341 MPa and an ultimate tensile strength of 409 MPa, together with an elongation to fracture of 4%.展开更多
A high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca (wt%) alloy containing W phase (Mg3Y2Zn3) prepared by permanent mold direct-chill casting is indirectly extruded at 350 ℃ and 400 ℃, respectively. The extruded alloys sh...A high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca (wt%) alloy containing W phase (Mg3Y2Zn3) prepared by permanent mold direct-chill casting is indirectly extruded at 350 ℃ and 400 ℃, respectively. The extruded alloys show bimodal grain structure consisting of fine dynamic recrystallized (DRXed) grains and unre- crystallized coarse regions containing fine W phase and β2′ precipitates. The fragmented W phase particles induced by extrusion stimulate nucleation of DRXed grains, leading to the formation of fine DRXed grains, which are mainly distributed near the W particle bands along the extrusion direction. The alloy extruded at 350 ℃ exhibits yield strength of 373 MPa, ultimate tensile strength of 403 MPa and elongation to failure of 5.1%. While the alloy extruded at 400 ℃ shows lower yield strength of 332 MPa, ultimate tensile strength of 352 MPa and higher elongation to failure of 12%. The mechanical properties of the as-extruded alloys vary with the distribution and size of W phase. A higher fraction of DRXed grains is obtained due to the homogeneous distribution of micron-scale broken W phase particles in the alloy extruded at 400 ℃, which can lead to higher ductility. In addition, the nano-scale dynamic W phase precipitates distributed in the unDRXed regions are refined at lower extrusion temperature. The smaller size of nano-scale W phase precipitates leads to a higher fraction of unDRXed regions which contributes to higher strength of the alloy extruded at 350 ℃.展开更多
An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight tho...An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration(I-D) thresholds.First,the study on landslide susceptibility in China is introduced.The entire territory has been classified into five categories,among which high-susceptibility regions(Zone 4-'High' and 5-'Very high') account for 4.15%of the total extension of China.Second,rainfall is considered as an external triggering factor that may induce landslide initiation.Real-time satellite-based TMPA3B42 products may provide real rainfall spatial and temporal patterns,which may be used to derive rainfall duration time and intensity.By using a historical record of 60 significant past landslides,the rainfall I-D equation has been calibrated.The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours.The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds,where the susceptibility category is 'high' or 'very high'.This study shows a useful tool to be part of a systematic landslide simulation methodology,potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China.展开更多
In order to investigate the effect of N on the microstructure and room temperature mechanical properties of new-type high silicon martensitic heat-resistant steels,three steels containing the same total content of C a...In order to investigate the effect of N on the microstructure and room temperature mechanical properties of new-type high silicon martensitic heat-resistant steels,three steels containing the same total content of C and N but different N contents have been designed and prepared according to the thermo-calc calculation.The thermodynamic calculation and experiments indicate that the replacing of C by N changes the kind and volume fraction of precipitates of the high Si martensitic steel significantly.Along with the N content increasing,the precipitates in the samples after 750 °C tempering change from(Cr23C6? VN ? TaC) to(Cr23C6? VN ? TaC ? TaN) and finally to(Cr23C6? VN ? Cr2N)according to both experimental results and thermodynamic calculations.The room temperature mechanical tests show that the strength of the steel decreases as the N content increases.However,the Charpy impact toughness increases with N content increasing.According to the calculation and SEM observation,it is inferred that the decrease of amount and size of precipitates accounts for the changes of the mechanical properties.展开更多
基金supported by the National Natural Science Foundation of China (No50771011)
文摘To study the precipitation mechanism of α-Cr phase in Inconel 718 alloy, the samples after long-time aging at 650 and 677℃ were examined by microstructural observations and chemical phase analysis methods. Combining the thermodynamics and kinetics calculation results, α-Cr always precipitates in the vicinity of δ phase, because δ phase rejects Cr into the γ-matrix when growing. The selected area diffraction patterns confirm that the crystallographic relationships of α-Cr with 6 phase are (010)d/(1- 10)a.Cr and [100]d/If 11 ]α-Cr- A graphic model is also presented to show the crystallographic relation between α-Cr and δ phases.
基金financially supported by the project of the China Geological Survey(DD20230292,DD20242591)。
文摘The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.
文摘The characteristics and generation mechanism of(Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of(Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich(Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2–5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of(Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is(Ti_(0.511)V_(0.356)Nb_(0.133))(CxNy), whereas that for the single Nb-rich phase is(Ti_(0.061)V_(0.263)Nb_(0.676))(C_xN_y). The calculation results based on the Scheil–Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.
基金This work was supported financially by the National Natural Science Foundation of China(Nos.51621003,11374028and U1330112)the Scientific Research Key Program of Beijing Municipal Commission of Education(No.KZ201310005002)+1 种基金the Beijing Municipal Found for Scientific Innovation(No.PXM2019014204500031)the Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institution(No.IDHT20190503)。
文摘Since titanium has high affinity for hydrogen and reacts reversibly with hydrogen,the precipitation of titanium hydrides in titanium and its alloys cannot be ignored.Two most common hydride precipitates in α-Ti matrix areγ-hydride and δ-hydride,however their mechanisms for precipitation are still unclear.In the present study,we find that both γ-hydride and δ-hydride phases with different specific orientations were randomly precipitated in the as-received hot forged commercially pure Ti.In addition,a large amount of the titanium hydrides can be introduced into Ti matrix with selective precipitation by using electrochemical treatment.Cs-corrected scanning transmission electron microscopy is used to study the precipitation mechanisms of the two hydrides.It is revealed that the γ-hydride and δ-hydride precipitations are both formed through slip+shuffle mechanisms involving a unit of two layers of titanium atoms,but the difference is that the γ-hydride is formed by prismatic slip corresponding to hydrogen occupying the octahedral sites of α-Ti,while the δ-hydride is formed by basal slip corresponding to hydrogen occupying the tetrahedral sites ofα-Ti.
基金The work was financially funded by CGS Research Fund(DZLXJK202103,DZLXJK202206,DZLXJK202203)China Geologi-cal Survey project(DD20230344)+1 种基金Guizhou Provincial Science and Technology Project(Qiankehezhicheng[2021]408)major project of Guizhou Bureau of Geology and Mineral Resources Exploration and Development(Qiandikuangkehe[2021]1).
文摘Cassiterite(SnO_(2))is the main ore mineral of tin in magmatic-hydrothermal tin deposits,but tin transport and precipitation mechanisms from hydrothermal fluids remain poorly understood.We critically evalu-ated aqueous tin speciation in hydrothermal fluids from extensive experimental data and thermody-namic modeling.Sn(II)chloride complexes in hydrothermal fluids exist mainly as SnCl^(+),SnCl_(2)(aq),and SnCl_(3).The revised Helgeson-Kirkham-Flowers model parameters of these three tin species and two tin ions(Sn^(4+) and Sn^(2+))were derived from the correlation algorithms among these parameters,and the standard molar properties of cassiterite were optimized to be internally consistent with the available thermodynamic dataset.These thermodynamic parameters,together with the available equilibrium con-stant equation of Sn(IV)chloride complexes,could reproduce the available solubility data of cassiterite in acidic solutions at 400-700℃under oxygen fugacity(f_(o2))levels buffered by hematite-magnetite(HM)or nickel-nickel oxide(NNO).These comparisons allow modeling chemical systems of SnO_(2)-NaCl-HCI-H_(2)O(liquid phase)to examine tin transport and cassiterite precipitation mechanisms under tin-mineralizing conditions:300--500℃,50-150 MPa,2 molal NaCI,and fo。levels from QFM(quartz-fayalite-magnetite)to HM.Sn(I)chloride complexes are commonly interpreted to dominate in aqueous tin speciation under f_(o2)=NNO,but our modeling results indicate that considerable contents of Sn(IV)chloride complexes also exist in those reduced fluids with high HCI contents,consistent with recent in situ high-temperature experiments and molecular dynamic simulations.The Sn(I)/Sn(IV)ratios in fluids depends onfo,temperature,and HCl contents.A considerable amount of Sn(IV)possibly exist in an early mineralization stage even under f_(o2)=NNO;if so,redox reactions are unnecessary to precipitate cassiterite from these mineralizing fluids.We find that even if the f_(o2) levels are constant,simple cooling can alter mineralizing fluids to be more oxidized(e.g.,from QFM to HM)and cause cassiterite precipitation,indicating that oxidizing agents are not necessary as previously thought.This explains why cassiterite can precipitate in host rocks(e.g.,sandstone or quartzite)that do not provide oxidizing agents.A simple rise in f_(o2),levels and pH neutralization(e.g.,greisenization)also cause cassiterite precipitation.Cassiterite solubility in oxidized acidic hydrothermal fluids(NNO<f_(o2),<HM)is high enough to account for the tin contents of fluid inclusions from typical tin deposits,but the mineralization potential of oxdized fluids is inferior to reduced fluids(f_(o2),≤NNO)under the same conditions.
基金supported by the Science and Technology Program of Sichuan Province,China(No.2013GZX0146)
文摘The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.
文摘In order to improve the knowledge of the precipitation mechanism in martensitic steels containing carbon,XRD synchrotron experiments were performed. Firstly, the influence of Ni,Co and Al were studied and it was found that the precipitation of iron carbides occurs in same way as in Fe-C steel. However, with the addition of molybdenum and chromium in same steels, XRD synchrotron investigations clearly showed alloyed carbides directly precipitate, thereby preventing the iron carbides formation.
基金supported by the National Funds for Distinguished Young Scientists of China (No. 41225004)Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme,the Ministry of Environmental Protection of China (No. 201109020)the National Natural Science Foundation of China (No. 41101483)
文摘Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as well as dead cells revealed that both extracellular adsorption and intracellular accumulation were involved in the Pb2+removal from the liquid phase. Of the sequestered Pb(II), 8.5% was held by physical entrapment within the cell wall, 43.3% was held by ion-exchange, 9.7% was complexed with cell surface functional groups or precipitated on the cell surface, and 38.5% was intracellularly accumulated.Complexation of Pb2+with carboxyl, hydroxyl, carbonyl, amido, and phosphate groups was demonstrated by Fourier transform infrared spectroscopic analysis. Precipitates of Pb5(PO4)3OH, Pb5(PO4)3Cl and Pb10(PO4)6(OH)2that formed on the cell surface during the biosorption process were identified by X-ray diffraction analysis. Transmission electron microscopy–energy dispersive spectroscopic analysis confirmed the presence of the Pb(II)precipitates and that Pb(II) could be sequestered both extracellularly and intracellularly.Incubation with B. subtilis DBM significantly decreased the amount of the weak-acid-soluble Pb fraction in a heavy-metal-contaminated soil, resulting in a reduction in Pb bioavailability, but increased the amount of its organic-matter-bound fraction by 71%. The ability of B.subtilis DBM to reduce the bioavailability of soil Pb makes it potentially useful for bacteria-assisted phytostabilization of multi-heavy-metal-contaminated soil.
基金supported by Materials Forming Processing Control and Simulation Laboratory in University of Science and Technology BeijingCNMC Ningxia Orient Group Co.,Ltd.
文摘In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) were aged at 320 ℃for different time,respectively.The mechanical properties,electrical conductivity and microstructure of the alloy aged for different time were analyzed.Additionally,the precipitation kinetics of Cu-1.9Be-0.3Ni-0.15Co alloys was investigated.X-ray diffraction and transmission electron microscopy results reveal that both continuous precipitation and discontinuous precipitation existed in the hard-state Cu-l.9Be-0.3Ni-0.15Co alloy during the whole aging process;the sequence of continuous precipitation is G.P.zone →γ″→γ′→γ.Furthermore,the precipitation transformation mechanism of softstate alloy is homogeneous nucleation,while hard-state alloy shows the heterogeneous nucleation(interface nucleation)with the nucleation rate of both states decaying rapidly to zero during aging at 320 ℃.
基金Item Sponsored by National Natural Science Foundation of China(50901054,51101114)
文摘The precipitation behavior of FeTiP in interstitial free high strength(IFHS)steels has been studied by using a transmission electron microscope(TEM).The results show that the TiC particles,appearing at earlier stage,are more stable than the FeTiP ones during recrystallization annealing at the two given temperatures(810℃ and 840℃).Therefore,the FeTiP particles can only be observed in the steels with sufficient amount of Ti.There is a critical forming time for the FeTiP,which is between 90-120 sat 810 ℃ and 60-90 sat 840 ℃.The precipitation of FeTiP involves two steps,i.e.the formation of FeTi precursors and the diffusion of P.The former step determines the reliance of Ti content for the precipitation of FeTiP,whereas the latter step leads to the difference in the critical annealing time.
文摘Cerium-based oxide coatings can be obtained through either chemical or electrochemical processes on various conductor and semiconductor substrates. In both cases the films develop through a precipitation mechanism, which strongly depends on the solution chemistry. In the particular case of the electrolytic approach, the elaboration parameters play a key role on the interfacial pH modification thereby leading to an indirect precipitation mechanism. Indeed, the nucleation and growth mechanisms of crystallites and the composition of the resulting layers have been shown to be also strongly affected by the deposition conditions as well as by the substrate composition, which could in turn modify the protectiveness provided by such coatings. Therefore a better fundamental understanding of the system is required, in particular of the distribution of cerium-containing species in aqueous solution. To this end, the present work intended to develop a diagram showing the distribution as well as the relative amount of Ce(Ⅲ)/Ce(Ⅳ) species in aqueous media as a fimction of the pH range. The resulting pH-distribution diagram turned out to be a useful tool to predict the relevant precipitation mechanisms and species involved during the growth of ceriuna-containing films and to draw correlations with the characteristics of the as-deposited films.
基金financially supported by Mahasarakham University in 2020。
文摘Hollow mesoporous TiO2 spheres(THs)were prepared via template-directed deposition of TiO2 nanoparticles on the surface of carbon spheres.The carbon spheres were used as hard templates.Their diameters were controlled by pH adjustment prior to a hydrothermal process.Physical properties,such as crystallinity,optical characteristics,microstructure and surface morphology of the samples were characterized.The results showed that the diameter of the carbon template could be well controlled in the range of 397-729 nm by adjusting the initial pH value of the dextrose solution from 3 to 10.Hollow TiO2 spheres with average diameters ranging from 171 to 668 nm and shell thicknesses ranging from 28 to 47 nm formed by heat treatment at 450℃.The photocatalytic performance of hollow TiO2 spheres and TiO2 nanoparticles was examined under UVA irradiation using a methyl orange aqueous solution as an artificial dye.The study revealed that the THs synthesized using a dextrose solution at pH 7 had a higher photocatalytic activity compared to other samples since it had the lowest shell thickness and the proper optical band gap of 3.12 eV with the longest lifetime of electron-hole pair separation.
基金Sponsored by National Science and Technology Support Plan of China(2007BAE51B02)
文摘To investigate the effect of high temperature ageing on the microstructure and mechanical properties of S31042steel,solid solution treatment at 700℃ was carried out for various time from 10to 6 000h.Experimental results showed that the change of mechanical properties is closely related to the amount of precipitated phases.During ageing from 10to 300h,precipitation in the tested steel increases rapidly,and correspondingly,the high temperature yield strength and room temperature hardness of tested steel increase rapidly.Meanwhile,the thickness of the secondary phase on grain boundaries widens sharply and the room temperature Charpy impact absorb energy decreases.Ageing beyond 300h,the precipitation in the steel increases gradually and the precipitates coarsen to a certain extent.The high temperature yield strength of the steel keeps stable,and the room temperature Charpy impact energy and hardness decrease slowly.Ageing beyond 3 000h,the mechanical properties of the steel tend to be stable.The main precipitates are M23C6,NbCrN and NbC in the tested steel.
基金supported by the National Natural Science Foundation of China (Grant No. 51674077)the fund of the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology (SKLAB02015005)
文摘Ductility and electrical conductivity of metallic materials are inversely correlated with their strength,resulting in a difficulty of optimizing all three simultaneously. We design an Al-Sc-Zr-based alloy using semisolid extrusion to yield a good trade-off between strength and ductility along with excellent electrical conductivity. The Al-0.35Sc-0.2Zr wire with a diameter of 3 mm exhibited the best combined properties: a tensile strength of 210 ± 2 MPa, elongation of 7.6% ± 0.5%, and an electrical conductivity of 34.9 ± 0.05 MS/m. The average particle size of nanosized Al3(Sc, Zr) precipitates increased from 6.5 ± 0.5 nm to 25.0 ± 0.5 nm as the aging time increased from 1 h to 96 h at 380 °C, accompanied by the corresponding volume fraction variation from(6.2 ± 0.1) × 10^(-4) to(3.7 ± 0.1) × 10^(-3). As proved by transmission electron microscopy observation, the high strength originates from the effective blockage of dislocation motion by numerous nanosized Al3(Sc, Zr) precipitates whilst both electrical conductivity and ductility remain at a high level due to the coherent precipitates possessing an extremely low electrical resistivity.
文摘The effect of solution annealing on the microstructure and mechanical properties of a Ni-Cr-W-Fe alloy developed for advanced 700?C ultra-supercritical power plants was investigated. Test samples in this study were subjected to different solution treatments and the same aging treatment(at 760?C for 1 h).When solution annealing temperature was elevated from 1020?C to 1150?C, the stress-rupture life at750?C/320 MPa was increased from 60 h to 300 h, the stress-rupture elongation was enhanced from12% to 17%, and the elongation of the tensile at 750?C was improved from 11% to 24%. All tensile and stress-rupture samples displayed an intergranular dimple mixed fracture. Intergranular micro-cracks had a great relationship with the morphology of grain boundary carbides. Most carbides retained the morphology of globular shape and continuous thin plate. After tensile and stress-rupture tests, a few carbides were converted into lamellar. The results showed that intergranular micro-cracks were easier to form at continuous thin plate carbides than at globular shape carbides. Lamellar carbides hardly caused the nucleation of micro-cracks. Besides, grain boundaries sliding and elements diffusion during stressrupture tests led to the formation of precipitate free zones, which accelerated the extension of microcracks and influenced the stress-rupture life.
文摘Mg-9Al-6Sn-3Zn (wt%) alloy was extruded and heat treated in T5 and T6 conditions, and its mechanical properties and microstructures were investigated. The extruded product can be slightly strengthened by the T5 treatment as a result of sparse and heterogeneous precipitation. Significant increase in strength is achieved by the T6 treatment, and this is mostly attributed to the formation of lamellar discontinuous Mg17Al12 precipitates. The segregation of Al and Zn at grain boundaries is responsible for the discontinuous Mg17Al12 nucleation. The T6-treated alloy exhibits a tensile yield strength of 341 MPa and an ultimate tensile strength of 409 MPa, together with an elongation to fracture of 4%.
基金supported financially by the National Key Research and Development Program of China (No. 2016YFB0301102)the National Natural Science Foundation of China (No. 51571068)
文摘A high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca (wt%) alloy containing W phase (Mg3Y2Zn3) prepared by permanent mold direct-chill casting is indirectly extruded at 350 ℃ and 400 ℃, respectively. The extruded alloys show bimodal grain structure consisting of fine dynamic recrystallized (DRXed) grains and unre- crystallized coarse regions containing fine W phase and β2′ precipitates. The fragmented W phase particles induced by extrusion stimulate nucleation of DRXed grains, leading to the formation of fine DRXed grains, which are mainly distributed near the W particle bands along the extrusion direction. The alloy extruded at 350 ℃ exhibits yield strength of 373 MPa, ultimate tensile strength of 403 MPa and elongation to failure of 5.1%. While the alloy extruded at 400 ℃ shows lower yield strength of 332 MPa, ultimate tensile strength of 352 MPa and higher elongation to failure of 12%. The mechanical properties of the as-extruded alloys vary with the distribution and size of W phase. A higher fraction of DRXed grains is obtained due to the homogeneous distribution of micron-scale broken W phase particles in the alloy extruded at 400 ℃, which can lead to higher ductility. In addition, the nano-scale dynamic W phase precipitates distributed in the unDRXed regions are refined at lower extrusion temperature. The smaller size of nano-scale W phase precipitates leads to a higher fraction of unDRXed regions which contributes to higher strength of the alloy extruded at 350 ℃.
基金supported by the National Natural Science Foundation of China(Grant No.41501458)China Postdoctoral Science Foundation Funded Project(Grant No.2016M592860)+4 种基金National Basic Research Program of China(Grant No.2013CB733204)Key Laboratory of Mining Spatial Information Technology of NASMG(Grant Nos. KLM201309)Science Program of Shanghai Normal University(Grant No. SK201525)the Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development(Grant Nos.2013LASW-A09 & SKHL1310)the Center of Spatial Information Science and Sustainable Development Applications,Tongji University,Shanghai,China
文摘An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration(I-D) thresholds.First,the study on landslide susceptibility in China is introduced.The entire territory has been classified into five categories,among which high-susceptibility regions(Zone 4-'High' and 5-'Very high') account for 4.15%of the total extension of China.Second,rainfall is considered as an external triggering factor that may induce landslide initiation.Real-time satellite-based TMPA3B42 products may provide real rainfall spatial and temporal patterns,which may be used to derive rainfall duration time and intensity.By using a historical record of 60 significant past landslides,the rainfall I-D equation has been calibrated.The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours.The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds,where the susceptibility category is 'high' or 'very high'.This study shows a useful tool to be part of a systematic landslide simulation methodology,potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China.
基金financially supported by the Strategic Priority Research Program CAS (No.XDA03010304)the National Natural Science Foundation of China (No.91226204)the Youth Innovation Promotion Association CAS
文摘In order to investigate the effect of N on the microstructure and room temperature mechanical properties of new-type high silicon martensitic heat-resistant steels,three steels containing the same total content of C and N but different N contents have been designed and prepared according to the thermo-calc calculation.The thermodynamic calculation and experiments indicate that the replacing of C by N changes the kind and volume fraction of precipitates of the high Si martensitic steel significantly.Along with the N content increasing,the precipitates in the samples after 750 °C tempering change from(Cr23C6? VN ? TaC) to(Cr23C6? VN ? TaC ? TaN) and finally to(Cr23C6? VN ? Cr2N)according to both experimental results and thermodynamic calculations.The room temperature mechanical tests show that the strength of the steel decreases as the N content increases.However,the Charpy impact toughness increases with N content increasing.According to the calculation and SEM observation,it is inferred that the decrease of amount and size of precipitates accounts for the changes of the mechanical properties.