Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and t...Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.展开更多
Propagation of stationary random waves in viscoelastic stratified transverse isotropic materials is investigated. The solid was considered multi-layered and located above the bedrock, which was assumed to be much stif...Propagation of stationary random waves in viscoelastic stratified transverse isotropic materials is investigated. The solid was considered multi-layered and located above the bedrock, which was assumed to be much stiffer than the soil, and the power spectrum density of the stationary random excitation was given at the bedrock. The governing differential equations are derived in frequency and wave-number domains and only a set of ordinary differential equations ( ODEs) must be solved. The precise integration algorithm of two-point boundary value problem was applied to solve the ODEs. Thereafter, the recently developed pseudo-excitation method for structural random vibration is extended to the solution of the stratified solid responses.展开更多
基金Project(52178101) supported by the National Natural Science Foundation of China。
文摘Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.
基金Project supported by the National Natural Science Foundation of China (No. 10472023)the Special Fund for PhD Program of Education Ministry of China (No. 20040141020)
文摘Propagation of stationary random waves in viscoelastic stratified transverse isotropic materials is investigated. The solid was considered multi-layered and located above the bedrock, which was assumed to be much stiffer than the soil, and the power spectrum density of the stationary random excitation was given at the bedrock. The governing differential equations are derived in frequency and wave-number domains and only a set of ordinary differential equations ( ODEs) must be solved. The precise integration algorithm of two-point boundary value problem was applied to solve the ODEs. Thereafter, the recently developed pseudo-excitation method for structural random vibration is extended to the solution of the stratified solid responses.