Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response ...Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response refers to a variety of extensional,contractional,or shear modes of crystals,and also relies on boundary conditions from morphology design.However,to pursue fundamental torsion actuation in an integrated piezoceramic component is still a long-term tough task due to nil twist mode limited by microscopic crystal mirror symmetry.Herein,we demonstrate a design of cofired monolithic actuators to originally overcome this obstacle.The prototype device is composed of two sets of stacked actuation subunits that work on artificially reverse face shear modes,and their chiral stiffness couplings will synergistically contribute to synthetic twist outputs at a broad bandwidth.Finite element simulation reveals twist displacements are highly tunable by manipulating the geometrical dimensions.Transverse deflection measurements manifest the stable and sizeable linear actuation response to applied electric fields(around 3.7μm under 40 V at 1 Hz).Importantly,the design actually introduces a more general route to enable arbitrary modes and actuation states in integrated piezoceramic components.展开更多
A new precise actuator is proposed,which is ac-tuated by the impact force of an end-loaded piezoelectric bimorph cantilever,and bears two degrees of freedom for translation and rotation.The dynamic characteristics of ...A new precise actuator is proposed,which is ac-tuated by the impact force of an end-loaded piezoelectric bimorph cantilever,and bears two degrees of freedom for translation and rotation.The dynamic characteristics of the piezoelectric bimorph were analyzed by FEM,and are fur-ther proved by experimental tests.A new control system for the actuator was put forward and tested,which is called the fixed-frequency with adjustable voltage.In addition,the actuator’s performance of translation and rotation were both measured.The results demonstrate that the actuator is char-acterized by a simple structure,large movement range,strong driving ability and high positioning resolution.Its cost is estimated at only 1%of the traditional impact actuators.展开更多
基金the National Natural Science Foundation of China(51772005,51132001,and 52032012)Beijing Key Laboratory for Magnetoelectric Materials and Devices。
文摘Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response refers to a variety of extensional,contractional,or shear modes of crystals,and also relies on boundary conditions from morphology design.However,to pursue fundamental torsion actuation in an integrated piezoceramic component is still a long-term tough task due to nil twist mode limited by microscopic crystal mirror symmetry.Herein,we demonstrate a design of cofired monolithic actuators to originally overcome this obstacle.The prototype device is composed of two sets of stacked actuation subunits that work on artificially reverse face shear modes,and their chiral stiffness couplings will synergistically contribute to synthetic twist outputs at a broad bandwidth.Finite element simulation reveals twist displacements are highly tunable by manipulating the geometrical dimensions.Transverse deflection measurements manifest the stable and sizeable linear actuation response to applied electric fields(around 3.7μm under 40 V at 1 Hz).Importantly,the design actually introduces a more general route to enable arbitrary modes and actuation states in integrated piezoceramic components.
文摘A new precise actuator is proposed,which is ac-tuated by the impact force of an end-loaded piezoelectric bimorph cantilever,and bears two degrees of freedom for translation and rotation.The dynamic characteristics of the piezoelectric bimorph were analyzed by FEM,and are fur-ther proved by experimental tests.A new control system for the actuator was put forward and tested,which is called the fixed-frequency with adjustable voltage.In addition,the actuator’s performance of translation and rotation were both measured.The results demonstrate that the actuator is char-acterized by a simple structure,large movement range,strong driving ability and high positioning resolution.Its cost is estimated at only 1%of the traditional impact actuators.