Based on the linear theories of thin cylindrical shells and viscoelastic materials, a governing equation describing vibration of a sandwich circular cylindrical shell with a viscoelastic core under harmonic excitation...Based on the linear theories of thin cylindrical shells and viscoelastic materials, a governing equation describing vibration of a sandwich circular cylindrical shell with a viscoelastic core under harmonic excitation is derived. The equation can be written as a matrix differential equation of the first order, and is obtained by considering the energy dissipation due to the shear deformation of the viscoelastic core layer and the interaction between all layers. A new matrix method for solving the governing equation is then presented With an extended homogeneous capacity precision integration approach. Having obtained these, vibration characteristics and damping effect of the sandwich cylindrical shell can be studied. The method differs from a recently published work as the state vector in the governing equation is composed of displacements and internal forces of the sandwich shell rather than displacements and their derivatives. So the present method can be applied to solve dynamic problems of the kind of sandwich shells with various boundary conditions and partially constrained layer damping. Numerical examples show that the proposed approach is effective and reliable compared with the existing methods.展开更多
基金supported by the National Natural Science Foundation of China (No. 10662003)the Doctoral Fund of Ministry of Education of China (No. 20040787013)
文摘Based on the linear theories of thin cylindrical shells and viscoelastic materials, a governing equation describing vibration of a sandwich circular cylindrical shell with a viscoelastic core under harmonic excitation is derived. The equation can be written as a matrix differential equation of the first order, and is obtained by considering the energy dissipation due to the shear deformation of the viscoelastic core layer and the interaction between all layers. A new matrix method for solving the governing equation is then presented With an extended homogeneous capacity precision integration approach. Having obtained these, vibration characteristics and damping effect of the sandwich cylindrical shell can be studied. The method differs from a recently published work as the state vector in the governing equation is composed of displacements and internal forces of the sandwich shell rather than displacements and their derivatives. So the present method can be applied to solve dynamic problems of the kind of sandwich shells with various boundary conditions and partially constrained layer damping. Numerical examples show that the proposed approach is effective and reliable compared with the existing methods.