期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Precision motion control for electro-hydraulic axis systems under unknown time-variant parameters and disturbances
1
作者 Xiaowei YANG Yaowen GE +1 位作者 Wenxiang DENG Jianyong YAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期463-471,共9页
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ... This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well. 展开更多
关键词 Adaptive control Asymptotic convergence Electro-hydraulic axis system precision motion control Unknown time-variant parameters and disturbances
原文传递
Real-Time Iterative Compensation Framework for Precision Mechatronic Motion Control Systems 被引量:2
2
作者 Chuxiong Hu Ran Zhou +2 位作者 Ze Wang Yu Zhu Masayoshi Tomizuka 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1218-1232,共15页
With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overc... With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness. 展开更多
关键词 precision motion control prediction model real-time iterative compensation trajectory tracking
下载PDF
Micro-Scale Motion Precision Simulation Method for a New-Type 6-DOF Micro-Manipulation Robot
3
作者 叶鑫 张之敬 王豫枢 《Journal of Beijing Institute of Technology》 EI CAS 2007年第4期414-418,共5页
A new 6-DOF micro-manipulation robot based on 3-PPTTRS parallel mechanisms in combination with flexure hinges is proposed. The design principle of the mechanism is introduced, and the kinematics analysis method based ... A new 6-DOF micro-manipulation robot based on 3-PPTTRS parallel mechanisms in combination with flexure hinges is proposed. The design principle of the mechanism is introduced, and the kinematics analysis method based on differentiation is used to get the (inverse) kinematics equations. Then a micro-scale motion precision simulation method is proposed according to finite element analysis (FEA), and the prediction of robot’s motion precision in design phase is realized. The simulation result indicates that the 6-DOF micro-manipulation robot can meet the design specification. 展开更多
关键词 MICRO-SCALE 6-DOF micro-manipulation robot kinematics characteristic motion precision simulation
下载PDF
Motion Error Compensation of Multi-legged Walking Robots 被引量:6
4
作者 WANG Liangwen CHEN Xuedong +3 位作者 WANG Xinjie TANG Weigang SUN Yi PAN Chunmei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期639-646,共8页
Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation... Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward. 展开更多
关键词 multi-legged walking robot error model motion error compensation kinematic analysis motion precision
下载PDF
Takagi–Sugeno Fuzzy Modeling and Control for Effective Robotic Manipulator Motion 被引量:1
5
作者 Izzat Al-Darraji Ayad AKakei +5 位作者 Ayad Ghany Ismaeel Georgios Tsaramirsis Fazal Qudus Khan Princy Randhawa Muath Alrammal Sadeeq Jan 《Computers, Materials & Continua》 SCIE EI 2022年第4期1011-1024,共14页
Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors wit... Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part.To address these issues,the Linear Matrix Inequalities(LMIs)and Parallel Distributed Compensation(PDC)approaches are implemented in the Takagy–Sugeno Fuzzy Model(T-SFM).We propose the following methodology;initially,the state space equations of the nonlinear manipulator model are derived.Next,a Takagy–Sugeno Fuzzy Model(T-SFM)technique is used for linearizing the state space equations of the nonlinear manipulator.The T-SFM controller is developed using the Parallel Distributed Compensation(PDC)method.The prime concept of the designed controller is to compensate for all the fuzzy rules.Furthermore,the Linear Matrix Inequalities(LMIs)are applied to generate adequate cases to ensure stability and control.Convex programming methods are applied to solve the developed LMIs problems.Simulations developed for the proposed model show that the proposed controller stabilized the system with zero tracking error in less than 1.5 s. 展开更多
关键词 Nonlinear robot manipulator precise fast robot motion flexible joints motor friction Takagy-Sugeno fuzzy control modeling nonlinear flexible robot system
下载PDF
Data-driven Nonparametric Model Adaptive Precision Control for Linear Servo Systems 被引量:2
6
作者 Rong-Min Cao Zhong-Sheng Hou Hui-Xing Zhou 《International Journal of Automation and computing》 EI CSCD 2014年第5期517-526,共10页
Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo... Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo system. The controller design requires no information about the structure of linear servo system, and it is based on the estimation and forecasting of the pseudo-partial derivatives(PPD) which are estimated according to the voltage input and position output of the linear motor. The characteristics and operational mechanism of the permanent magnet synchronous linear motor(PMSLM) are introduced, and the proposed nonparametric model control strategy has been compared with the classic proportional-integral-derivative(PID) control algorithm. Several real-time experiments on the motion control system incorporating a permanent magnet synchronous linear motor showed that the nonparametric model adaptive control method improved the system s response to disturbances and its position-tracking precision, even for a nonlinear system with incompletely known dynamic characteristics. 展开更多
关键词 Data-driven control nonparametric model adaptive control precision motion control permanent magnet synchronous linear motor ROBUSTNESS
原文传递
Influence of cryogenic permanent magnet undulator motion error on magnetic field error and radiation intensity loss
7
作者 Shu-Chen Sun Wei-Fan Sheng +9 位作者 Hui-Hua Lu Xiao-Yu Li Shu-Tao Zhao Ling-Ling Gong Wan Chen Zhi-Qiang Li Lei Zhang Yu-Feng Yang Xiang-Zhen Zhang Ya-Jun Sun 《Radiation Detection Technology and Methods》 2018年第1期200-206,共7页
A cryogenic permanent magnet undulator prototype designed for Chinese High Energy Photon Source Test Facility(HEPSTF)at Institute of High Energy Physics is constructed and now commissioning.Motion precision of girders... A cryogenic permanent magnet undulator prototype designed for Chinese High Energy Photon Source Test Facility(HEPSTF)at Institute of High Energy Physics is constructed and now commissioning.Motion precision of girders is a significant parameter to guarantee gap error so as to avoid phase error and radiation intensity loss.In order to study and minimize girder parallelism errors,RADIA and SPECTRA are used to calculate qualified motion precision.Spring Modules and single motor closed-loop feedback are designed to compensate the errors.Magnetic field is finally tuned to reach specifications.Details of the study and analysis will be presented in this paper. 展开更多
关键词 motion precision test Cryogenic permanent magnet undulator Phase error Radiation intensity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部