The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed...The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed. Also the optimal parameter is presented. Numerical results show that the proper choice of the preconditioner can lead to effective by the preconditioned Gauss-Seidel type iterative methods for solving linear systems.展开更多
The preconditioned methods for solving linear system are discussed. The convergence rate of accelerated overrelaxation (AOR) method can be enlarged by using the preconditioned method when the classical AOR method conv...The preconditioned methods for solving linear system are discussed. The convergence rate of accelerated overrelaxation (AOR) method can be enlarged by using the preconditioned method when the classical AOR method converges, and the preconditioned method is invalid when the classical iterative method does not converge. The results in corresponding references are improved and perfected.展开更多
Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?...Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?) i≠j),A=I-L-U,I is the identity matrix,-L and-U are,respectively,strictly lower and strictly upper triangular parts of A.In[1]theauthors considered two preconditioned linear systems?x=(?) and ?x=(?)展开更多
We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a ...We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a special case,a lower bound for preconditioners defined via the method of successive subspace corrections.展开更多
A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex...A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.展开更多
基金Project supported by MOE's 2004 New Century Excellent Talent Program (NCET)the Applied Basic Research Foundations of Sichuan Province (No.05JY029-068-2)
文摘The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed. Also the optimal parameter is presented. Numerical results show that the proper choice of the preconditioner can lead to effective by the preconditioned Gauss-Seidel type iterative methods for solving linear systems.
文摘The preconditioned methods for solving linear system are discussed. The convergence rate of accelerated overrelaxation (AOR) method can be enlarged by using the preconditioned method when the classical AOR method converges, and the preconditioned method is invalid when the classical iterative method does not converge. The results in corresponding references are improved and perfected.
文摘Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?) i≠j),A=I-L-U,I is the identity matrix,-L and-U are,respectively,strictly lower and strictly upper triangular parts of A.In[1]theauthors considered two preconditioned linear systems?x=(?) and ?x=(?)
文摘We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a special case,a lower bound for preconditioners defined via the method of successive subspace corrections.
文摘A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.