To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and invest...To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and investigated. The time derivatives of three-dimensional Navier-Stokes equations are preconditioned by Choi-Merkle preconditioning matrix that is originally designed for two-dimensional low Mach number viscous flows. An extension to three-dimensional viscous flow is implemented, and a method improving the convergence for transonic flow is proposed. The space discretizaition is performed by employing a finite-volume cell-centered scheme and using a central difference. The time marching is based on an explicit Rtmge-Kutta scheme proposed by Jameson. An efficient FAS multigrid method is used to accelerate the convergence to steady-state solutions. Viscous flows over ONERA M6 wing and M100 wing are numerically simulated with Mach numbers ranging from 0.010 to 0.839. The inviscid flow over the DLR-F4 wing-body configuration is also calculated to preliminarily examine the performance of the presented method for complex configuration. The computed results are compared with the experimental data and good agreement is achieved. It is shown that the presented method is efficient and robust for both compressible and incompressible flows and is very attractive for aerodynamic optimization designs of wing and complex configuration.展开更多
The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed...The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed. Also the optimal parameter is presented. Numerical results show that the proper choice of the preconditioner can lead to effective by the preconditioned Gauss-Seidel type iterative methods for solving linear systems.展开更多
Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image...Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method (PCCG). The theorems discuss respectively the qualitative property of the ite...In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method (PCCG). The theorems discuss respectively the qualitative property of the iterative solution and the construction principle of the iterative matrix. The authors put forward a new incompletely LU factorizing technique for non-M-matrix and the method of constructing the iterative matrix. This improved PCCG is used to calculate the ill-conditioned problems and large-scale three-dimensional finite element problems, and simultaneously contrasted with other methods. The abnormal phenomenon is analyzed when PCCG is used to solve the system of ill-conditioned equations, ft is shown that the method proposed in this paper is quite effective in solving the system of large-scale finite element equations and the system of ill-conditioned equations.展开更多
Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?...Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?) i≠j),A=I-L-U,I is the identity matrix,-L and-U are,respectively,strictly lower and strictly upper triangular parts of A.In[1]theauthors considered two preconditioned linear systems?x=(?) and ?x=(?)展开更多
The preconditioned methods for solving linear system are discussed. The convergence rate of accelerated overrelaxation (AOR) method can be enlarged by using the preconditioned method when the classical AOR method conv...The preconditioned methods for solving linear system are discussed. The convergence rate of accelerated overrelaxation (AOR) method can be enlarged by using the preconditioned method when the classical AOR method converges, and the preconditioned method is invalid when the classical iterative method does not converge. The results in corresponding references are improved and perfected.展开更多
The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA00...The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA0012 airfoil is used to verify the efficiency of the proposed method. Two cases of the low Mach number flows around the multi-element airfoil and the circular cylinder are also used to test the proposed method. Numerical results show that the methods combined the preconditioning method and compressible Navier-Stokes equations are efficient to solve low Mach number flows.展开更多
A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently so...A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme ( MILU-CG). The effects of surface suction or blowing' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen, can reduce the drag force significantly, too.展开更多
We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a ...We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a special case,a lower bound for preconditioners defined via the method of successive subspace corrections.展开更多
A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient meth...A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.展开更多
An inexact Halley's method-Halley-PCG(preconditioned conjugate gradient) method is proposed for solving the systems of linear equations for improved Halley method either by Cholesky factorization exactly or by prec...An inexact Halley's method-Halley-PCG(preconditioned conjugate gradient) method is proposed for solving the systems of linear equations for improved Halley method either by Cholesky factorization exactly or by preconditioned conjugate gradient method approximately. The convergence result is given and the efficiency of the method compared to the improved Halley's method is shown.展开更多
The restrictively preconditioned conjugate gradient (RPCG) method is further developed to solve large sparse system of linear equations of a block two-by-two structure. The basic idea of this new approach is that we...The restrictively preconditioned conjugate gradient (RPCG) method is further developed to solve large sparse system of linear equations of a block two-by-two structure. The basic idea of this new approach is that we apply the RPCG method to the normal-residual equation of the block two-by-two linear system and construct each required approximate matrix by making use of the incomplete orthogonal factorization of the involved matrix blocks. Numerical experiments show that the new method, called the restrictively preconditioned conjugate gradient on normal residual (RPCGNR), is more robust and effective than either the known RPCG method or the standard conjugate gradient on normal residual (CGNR) method when being used for solving the large sparse saddle point problems.展开更多
We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the assoc...We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.展开更多
A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex...A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.展开更多
This paper proposes a new accelerating technique for simulating low speed flows,termed as p Seudo High Speed method(SHS),which uses governing equations and numerical methods of compressible flows.SHS method has advant...This paper proposes a new accelerating technique for simulating low speed flows,termed as p Seudo High Speed method(SHS),which uses governing equations and numerical methods of compressible flows.SHS method has advantages of simple formula,easy manipulation,and only need to modify flux of Euler equations.It can directly employ the existing well-developed schemes of hyperbolic conservation laws.To verify the technique,several numerical experiments are performed,such as:flow past airfoils and flow past a cylinder.Analysis of SHS method and comparisons with some precondition methods are made numerically.All tests show that SHS method can greatly improve the efficiency of compressible method simulating low speed flow fields,which exhibits in accelerating the convergence rate and increasing the accuracy of the numerical results.展开更多
We develop a fast stochastic Galerkin method for an optimal control problem governed by a random space-fractional diffusion equation with deterministic constrained control. Optimal control problems governed by a fract...We develop a fast stochastic Galerkin method for an optimal control problem governed by a random space-fractional diffusion equation with deterministic constrained control. Optimal control problems governed by a fractional diffusion equation tends to provide a better description for transport or conduction processes in heterogeneous media. Howev- er, the fractional control problem introduces significant computation complexity due to the nonlocal nature of fractional differential operators, and this is further worsen by the large number of random space dimensions to discretize the probability space. We ap- proximate the optimality system by a gradient algorithm combined with the stochastic Galerkin method through the discretization with respect to both the spatial space and the probability space. The resulting linear system can be decoupled for the random and spatial variable, and thus solved separately. A fast preconditioned Bi-Conjugate Gradient Stabilized method is developed to efficiently solve the decoupled systems derived from the fractional diffusion operators in the spatial space. Numerical experiments show the utility of the method.展开更多
Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse ...Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse matrix factorization, combined with nine-point finite-difference for the linear system of equations. In the waveform inversion, we use preconditioned gradient method where the preconditioner is provided by the diagonal of the approximate Hessian matrix. We successfully applied waveform inversion method from low to high frequency in two sets of Marmousi data. One is the data set generated by frequencydomain finite-difference modeling, and the other is the original Marmousi shots data set. The former result is very close to the true velocity model. In the original shots data set inversion, we replace the prior source with estimated source; the result is also acceptable, and consistent with the true model.展开更多
This paper discusses the optimal preconditioning in the domain decomposition method for Wilson element. The process of the preconditioning is composed of the resolution of a small scale global problem based on a coars...This paper discusses the optimal preconditioning in the domain decomposition method for Wilson element. The process of the preconditioning is composed of the resolution of a small scale global problem based on a coarser grid and a number of independent local subproblems, which can be chosen arbitrarily. The condition number of the preconditioned system is estimated by some characteristic numbers related to global and local subproblems. With a proper selection, the optimal preconditioner can be obtained, while the condition number is independent of the scale of the problem and the number of subproblems.展开更多
In this paper, we present a series of new preconditioners with parameters of strictly diagonally dominant Z-matrix, which contain properly two kinds of known preconditioners as special cases. Moreover, we prove the mo...In this paper, we present a series of new preconditioners with parameters of strictly diagonally dominant Z-matrix, which contain properly two kinds of known preconditioners as special cases. Moreover, we prove the monotonicity of spectral radiuses of iterative matrices with respect to the parameters and some comparison theorems. The results obtained show that the bigger the parameter k is(i.e., we select the more upper right diagonal elements to be the preconditioner), the less the spectral radius of iterative matrix is. A numerical example generated randomly is provided to illustrate the theoretical results.展开更多
文摘To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and investigated. The time derivatives of three-dimensional Navier-Stokes equations are preconditioned by Choi-Merkle preconditioning matrix that is originally designed for two-dimensional low Mach number viscous flows. An extension to three-dimensional viscous flow is implemented, and a method improving the convergence for transonic flow is proposed. The space discretizaition is performed by employing a finite-volume cell-centered scheme and using a central difference. The time marching is based on an explicit Rtmge-Kutta scheme proposed by Jameson. An efficient FAS multigrid method is used to accelerate the convergence to steady-state solutions. Viscous flows over ONERA M6 wing and M100 wing are numerically simulated with Mach numbers ranging from 0.010 to 0.839. The inviscid flow over the DLR-F4 wing-body configuration is also calculated to preliminarily examine the performance of the presented method for complex configuration. The computed results are compared with the experimental data and good agreement is achieved. It is shown that the presented method is efficient and robust for both compressible and incompressible flows and is very attractive for aerodynamic optimization designs of wing and complex configuration.
基金Project supported by MOE's 2004 New Century Excellent Talent Program (NCET)the Applied Basic Research Foundations of Sichuan Province (No.05JY029-068-2)
文摘The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed. Also the optimal parameter is presented. Numerical results show that the proper choice of the preconditioner can lead to effective by the preconditioned Gauss-Seidel type iterative methods for solving linear systems.
基金supported by the National Basic Research Program (No.2005CB321702)the National Outstanding Young Scientist Foundation(No. 10525102)the Specialized Research Grant for High Educational Doctoral Program(Nos. 20090211120011 and LZULL200909),Hong Kong RGC grants and HKBU FRGs
文摘Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
文摘In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method (PCCG). The theorems discuss respectively the qualitative property of the iterative solution and the construction principle of the iterative matrix. The authors put forward a new incompletely LU factorizing technique for non-M-matrix and the method of constructing the iterative matrix. This improved PCCG is used to calculate the ill-conditioned problems and large-scale three-dimensional finite element problems, and simultaneously contrasted with other methods. The abnormal phenomenon is analyzed when PCCG is used to solve the system of ill-conditioned equations, ft is shown that the method proposed in this paper is quite effective in solving the system of large-scale finite element equations and the system of ill-conditioned equations.
文摘Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?) i≠j),A=I-L-U,I is the identity matrix,-L and-U are,respectively,strictly lower and strictly upper triangular parts of A.In[1]theauthors considered two preconditioned linear systems?x=(?) and ?x=(?)
文摘The preconditioned methods for solving linear system are discussed. The convergence rate of accelerated overrelaxation (AOR) method can be enlarged by using the preconditioned method when the classical AOR method converges, and the preconditioned method is invalid when the classical iterative method does not converge. The results in corresponding references are improved and perfected.
文摘The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA0012 airfoil is used to verify the efficiency of the proposed method. Two cases of the low Mach number flows around the multi-element airfoil and the circular cylinder are also used to test the proposed method. Numerical results show that the methods combined the preconditioning method and compressible Navier-Stokes equations are efficient to solve low Mach number flows.
基金Foundation item:the Natural Science Foundation of Jiangsu Province(BK97056109)
文摘A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme ( MILU-CG). The effects of surface suction or blowing' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen, can reduce the drag force significantly, too.
文摘We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a special case,a lower bound for preconditioners defined via the method of successive subspace corrections.
文摘A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.
文摘An inexact Halley's method-Halley-PCG(preconditioned conjugate gradient) method is proposed for solving the systems of linear equations for improved Halley method either by Cholesky factorization exactly or by preconditioned conjugate gradient method approximately. The convergence result is given and the efficiency of the method compared to the improved Halley's method is shown.
基金supported by the National Basic Research Program (No.2005CB321702)the China NNSF Outstanding Young Scientist Foundation (No.10525102)the National Natural Science Foundation (No.10471146),P.R.China
文摘The restrictively preconditioned conjugate gradient (RPCG) method is further developed to solve large sparse system of linear equations of a block two-by-two structure. The basic idea of this new approach is that we apply the RPCG method to the normal-residual equation of the block two-by-two linear system and construct each required approximate matrix by making use of the incomplete orthogonal factorization of the involved matrix blocks. Numerical experiments show that the new method, called the restrictively preconditioned conjugate gradient on normal residual (RPCGNR), is more robust and effective than either the known RPCG method or the standard conjugate gradient on normal residual (CGNR) method when being used for solving the large sparse saddle point problems.
文摘We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.
文摘A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.
文摘This paper proposes a new accelerating technique for simulating low speed flows,termed as p Seudo High Speed method(SHS),which uses governing equations and numerical methods of compressible flows.SHS method has advantages of simple formula,easy manipulation,and only need to modify flux of Euler equations.It can directly employ the existing well-developed schemes of hyperbolic conservation laws.To verify the technique,several numerical experiments are performed,such as:flow past airfoils and flow past a cylinder.Analysis of SHS method and comparisons with some precondition methods are made numerically.All tests show that SHS method can greatly improve the efficiency of compressible method simulating low speed flow fields,which exhibits in accelerating the convergence rate and increasing the accuracy of the numerical results.
基金This work was supported by the National Natural Science Foundation of China under grants 11371229, 11571026 and 11501326, and by the China Scholarship Council (File No. 2013083Y0102).
文摘We develop a fast stochastic Galerkin method for an optimal control problem governed by a random space-fractional diffusion equation with deterministic constrained control. Optimal control problems governed by a fractional diffusion equation tends to provide a better description for transport or conduction processes in heterogeneous media. Howev- er, the fractional control problem introduces significant computation complexity due to the nonlocal nature of fractional differential operators, and this is further worsen by the large number of random space dimensions to discretize the probability space. We ap- proximate the optimality system by a gradient algorithm combined with the stochastic Galerkin method through the discretization with respect to both the spatial space and the probability space. The resulting linear system can be decoupled for the random and spatial variable, and thus solved separately. A fast preconditioned Bi-Conjugate Gradient Stabilized method is developed to efficiently solve the decoupled systems derived from the fractional diffusion operators in the spatial space. Numerical experiments show the utility of the method.
基金Supported by the National Natural Science Foundation of China (69983005)
文摘Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse matrix factorization, combined with nine-point finite-difference for the linear system of equations. In the waveform inversion, we use preconditioned gradient method where the preconditioner is provided by the diagonal of the approximate Hessian matrix. We successfully applied waveform inversion method from low to high frequency in two sets of Marmousi data. One is the data set generated by frequencydomain finite-difference modeling, and the other is the original Marmousi shots data set. The former result is very close to the true velocity model. In the original shots data set inversion, we replace the prior source with estimated source; the result is also acceptable, and consistent with the true model.
文摘This paper discusses the optimal preconditioning in the domain decomposition method for Wilson element. The process of the preconditioning is composed of the resolution of a small scale global problem based on a coarser grid and a number of independent local subproblems, which can be chosen arbitrarily. The condition number of the preconditioned system is estimated by some characteristic numbers related to global and local subproblems. With a proper selection, the optimal preconditioner can be obtained, while the condition number is independent of the scale of the problem and the number of subproblems.
基金Shaanxi Province Natural Science Foundation,2007A16,China
文摘In this paper, we present a series of new preconditioners with parameters of strictly diagonally dominant Z-matrix, which contain properly two kinds of known preconditioners as special cases. Moreover, we prove the monotonicity of spectral radiuses of iterative matrices with respect to the parameters and some comparison theorems. The results obtained show that the bigger the parameter k is(i.e., we select the more upper right diagonal elements to be the preconditioner), the less the spectral radius of iterative matrix is. A numerical example generated randomly is provided to illustrate the theoretical results.