The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were ...The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were designed; the existing metal precursors, such as [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species in the solutions were confirmed by laser Raman spectroscopy(LRS). The UV-Vis spectra results indicated that the solutions containing both phosphoric acid and citric acid could change the existing form of nickel species. Five corresponding Ni Mo/Al_2O_3 catalysts were prepared by the incipient wetness impregnation method. The LRS analysis results of dried catalysts showed that the above metal precursors could be partly retained on alumina support after impregnation and drying, although the interface reaction between different metal precursors and alumina support unavoidably took place. Then the catalysts were sulfided and characterized by N2 physisorption, TEM and XPS analyses. The results showed that different metal precursors in impregnating solution could mainly result in the difference in both the morphology of(Ni)Mo S2 slabs and the promoting effect of Ni species. The catalyst prepared mainly with [P2Mo5O23]^(6-)-like species used as precursors exhibited worse dispersion of(Ni)Mo S2 slabs and lower ratio of Ni–Mo–S active phases than the one with [Mo4(citrate)2O11]^(4-)-like species. Promisingly, the catalyst prepared with co-existing [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species showed better hydrodesulfurization activity for 4,6-DMDBT thanks to its more well-dispersed Ni–Mo–S active phases.展开更多
Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor comp...Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.展开更多
基金supported by the National Key Basic Research Program of China(973 Program,2012CB224802)the SINOPEC project(No.114013)
文摘The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were designed; the existing metal precursors, such as [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species in the solutions were confirmed by laser Raman spectroscopy(LRS). The UV-Vis spectra results indicated that the solutions containing both phosphoric acid and citric acid could change the existing form of nickel species. Five corresponding Ni Mo/Al_2O_3 catalysts were prepared by the incipient wetness impregnation method. The LRS analysis results of dried catalysts showed that the above metal precursors could be partly retained on alumina support after impregnation and drying, although the interface reaction between different metal precursors and alumina support unavoidably took place. Then the catalysts were sulfided and characterized by N2 physisorption, TEM and XPS analyses. The results showed that different metal precursors in impregnating solution could mainly result in the difference in both the morphology of(Ni)Mo S2 slabs and the promoting effect of Ni species. The catalyst prepared mainly with [P2Mo5O23]^(6-)-like species used as precursors exhibited worse dispersion of(Ni)Mo S2 slabs and lower ratio of Ni–Mo–S active phases than the one with [Mo4(citrate)2O11]^(4-)-like species. Promisingly, the catalyst prepared with co-existing [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species showed better hydrodesulfurization activity for 4,6-DMDBT thanks to its more well-dispersed Ni–Mo–S active phases.
文摘Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.