期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
THE INFLUENCE OF PRECURSOR VARIABLES ON THE PHASE FORMATION, MICROSTRUCTURE AND TRANSPORT PROPERTY OF Bi-2223/Ag TAPES
1
作者 C.H.Jiang J.M.Yoo +1 位作者 J.W.Ko G.W.Qiao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第2期84-89,共6页
The Bi-2223/Ag tapes were prepared with spray-died powders, which are of different particle sizes and phase assemblages by varying the annealing time in pure oxygen. Longer time annealing degraded the reactivity of pr... The Bi-2223/Ag tapes were prepared with spray-died powders, which are of different particle sizes and phase assemblages by varying the annealing time in pure oxygen. Longer time annealing degraded the reactivity of precursor powder, which in turn resulted in an incomplete conversion from precursors to Bi-2223, porosity core and misaligned grains in fully processed tapes. The best Jc in short pressed samples varied from 29.7 to 47kA/cm2 for the tapes made from different powders. 展开更多
关键词 Bi-2223/Ag tape precursor powder critical current density
下载PDF
Preparation of GaN Powder of Nanometer Scale by MOCVD Using DEGA as Precursor
2
作者 Yu Ming ZHAO Ke Yan ZHOU Yun Cheng YUAN(Department of Chemistry, Delian University of Technology, Delian 116012) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第2期185-188,共4页
GaN powder of nanometer scale was prepared by metal organic chemical vapor deposition using diethylgallium azide as precursor. The resulting powder was characterized by XRD and TEM. It has been found that the particle... GaN powder of nanometer scale was prepared by metal organic chemical vapor deposition using diethylgallium azide as precursor. The resulting powder was characterized by XRD and TEM. It has been found that the particle size of the powder obtained is affected by the deposition temperature, and the fine crystals formed in temperature range 500 similar to 650 degrees C were hexagonal. 展开更多
关键词 MOCVD GAN Preparation of GaN Powder of Nanometer Scale by MOCVD Using DEGA as precursor
下载PDF
Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon 被引量:8
3
作者 Runmiao Xue Ariel Donovan +7 位作者 Haiting Zhang Yinfa Ma Craig Adams John Yang Bin Hua Enos Inniss Todd Eichholz Honglan Shi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第2期82-91,共10页
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may ... When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process. 展开更多
关键词 Disinfection by-products Drinking water treatment Ammonia removal by zeolite N-nitrosodimethylamine(NDMA) N-NITROSAMINES N-nitrosamine precursor removal by zeolite and powdered activated carbon
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部