The Bi-2223/Ag tapes were prepared with spray-died powders, which are of different particle sizes and phase assemblages by varying the annealing time in pure oxygen. Longer time annealing degraded the reactivity of pr...The Bi-2223/Ag tapes were prepared with spray-died powders, which are of different particle sizes and phase assemblages by varying the annealing time in pure oxygen. Longer time annealing degraded the reactivity of precursor powder, which in turn resulted in an incomplete conversion from precursors to Bi-2223, porosity core and misaligned grains in fully processed tapes. The best Jc in short pressed samples varied from 29.7 to 47kA/cm2 for the tapes made from different powders.展开更多
GaN powder of nanometer scale was prepared by metal organic chemical vapor deposition using diethylgallium azide as precursor. The resulting powder was characterized by XRD and TEM. It has been found that the particle...GaN powder of nanometer scale was prepared by metal organic chemical vapor deposition using diethylgallium azide as precursor. The resulting powder was characterized by XRD and TEM. It has been found that the particle size of the powder obtained is affected by the deposition temperature, and the fine crystals formed in temperature range 500 similar to 650 degrees C were hexagonal.展开更多
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may ...When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process.展开更多
文摘The Bi-2223/Ag tapes were prepared with spray-died powders, which are of different particle sizes and phase assemblages by varying the annealing time in pure oxygen. Longer time annealing degraded the reactivity of precursor powder, which in turn resulted in an incomplete conversion from precursors to Bi-2223, porosity core and misaligned grains in fully processed tapes. The best Jc in short pressed samples varied from 29.7 to 47kA/cm2 for the tapes made from different powders.
文摘GaN powder of nanometer scale was prepared by metal organic chemical vapor deposition using diethylgallium azide as precursor. The resulting powder was characterized by XRD and TEM. It has been found that the particle size of the powder obtained is affected by the deposition temperature, and the fine crystals formed in temperature range 500 similar to 650 degrees C were hexagonal.
基金supported by US EPA STAR program(No.83517301)Missouri Department of Natural Resourcesthe support from Chemistry Department,Environmental Research Center,and Center for Single Nanoparticle,Single Cell,and Single Molecule Monitoring(CS3M)at Missouri University of Science and Technology
文摘When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process.