Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipien...Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.展开更多
BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive mod...BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive model for preoperative identification of HCC.METHODS A retrospective analysis of 884 patients who underwent liver resection and pathology evaluation from February 2021 to August 2023 was conducted at the Oriental Hepatobiliary Surgery Hospital.The patients were divided into the modeling group(n=720)and the control group(n=164).The study included conventional ultrasound,2D-SWE,and preoperative laboratory tests.Multiple logistic regression was used to identify independent predictive factors for RESULTS In the modeling group analysis,maximal elasticity(Emax)of tumors and their peripheries,platelet count,cirrhosis,and blood flow were independent risk indicators for malignancies.These factors yielded an area under the curve of 0.77(95%confidence interval:0.73-0.81)with 84%sensitivity and 61%specificity.The model demonstrated good calibration in both the construction and validation cohorts,as shown by the calibration graph and Hosmer-Lemeshow test(P=0.683 and P=0.658,respectively).Additionally,the mean elasticity(Emean)of the tumor periphery was identified as a risk factor for microvascular invasion(MVI)in malignant liver tumors(P=0.003).Patients receiving antiviral treatment differed significantly in platelet count(P=0.002),Emax of tumors(P=0.033),Emean of tumors(P=0.042),Emax at tumor periphery(P<0.001),and Emean at tumor periphery(P=0.003).CONCLUSION 2D-SWE’s hardness value serves as a valuable marker for enhancing the preoperative diagnosis of malignant liver lesions,correlating significantly with MVI and antiviral treatment efficacy.展开更多
BACKGROUND Liver cirrhosis patients admitted to intensive care unit(ICU)have a high mortality rate.AIM To establish and validate a nomogram for predicting in-hospital mortality of ICU patients with liver cirrhosis.MET...BACKGROUND Liver cirrhosis patients admitted to intensive care unit(ICU)have a high mortality rate.AIM To establish and validate a nomogram for predicting in-hospital mortality of ICU patients with liver cirrhosis.METHODS We extracted demographic,etiological,vital sign,laboratory test,comorbidity,complication,treatment,and severity score data of liver cirrhosis patients from the Medical Information Mart for Intensive Care IV(MIMIC-IV)and electronic ICU(eICU)collaborative research database(eICU-CRD).Predictor selection and model building were based on the MIMIC-IV dataset.The variables selected through least absolute shrinkage and selection operator analysis were further screened through multivariate regression analysis to obtain final predictors.The final predictors were included in the multivariate logistic regression model,which was used to construct a nomogram.Finally,we conducted external validation using the eICU-CRD.The area under the receiver operating characteristic curve(AUC),decision curve,and calibration curve were used to assess the efficacy of the models.RESULTS Risk factors,including the mean respiratory rate,mean systolic blood pressure,mean heart rate,white blood cells,international normalized ratio,total bilirubin,age,invasive ventilation,vasopressor use,maximum stage of acute kidney injury,and sequential organ failure assessment score,were included in the multivariate logistic regression.The model achieved AUCs of 0.864 and 0.808 in the MIMIC-IV and eICU-CRD databases,respectively.The calibration curve also confirmed the predictive ability of the model,while the decision curve confirmed its clinical value.CONCLUSION The nomogram has high accuracy in predicting in-hospital mortality.Improving the included predictors may help improve the prognosis of patients.展开更多
The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown th...The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices.The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies(SSTAs)in the equatorial Pacific by training a convolutional neural network(CNN)model with historical simulations from CMIP6 models.Compared with dynamical models,the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific,but not in the eastern Pacific.The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months.A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.展开更多
Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an...Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks.The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors.The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors.For selected meteorological data,RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs.These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage.展开更多
Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treat...Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treatment response can help patients choose a reasonable treatment plan.This study aimed to investigate the value of the radiomic-clinical model in predicting the efficacy of the first TACE treatment for HCC to prolong patient survival.Methods:A total of 164 patients with HCC who underwent the first TACE from January 2017 to September 2021 were analyzed.The tumor response was assessed by modified response evaluation criteria in solid tumors(mRECIST),and the response of the first TACE to each session and its correlation with overall survival were evaluated.The radiomic signatures associated with the treatment response were identified by the least absolute shrinkage and selection operator(LASSO),and four machine learning models were built with different types of regions of interest(ROIs)(tumor and corresponding tissues)and the model with the best performance was selected.The predictive performance was assessed with receiver operating characteristic(ROC)curves and calibration curves.Results:Of all the models,the random forest(RF)model with peritumor(+10 mm)radiomic signatures had the best performance[area under ROC curve(AUC)=0.964 in the training cohort,AUC=0.949 in the validation cohort].The RF model was used to calculate the radiomic score(Rad-score),and the optimal cutoff value(0.34)was calculated according to the Youden’s index.Patients were then divided into a high-risk group(Rad-score>0.34)and a low-risk group(Rad-score≤0.34),and a nomogram model was successfully established to predict treatment response.The predicted treatment response also allowed for significant discrimination of Kaplan-Meier curves.Multivariate Cox regression identified six independent prognostic factors for overall survival,including male[hazard ratio(HR)=0.500,95%confidence interval(CI):0.260–0.962,P=0.038],alpha-fetoprotein(HR=1.003,95%CI:1.002–1.004,P<0.001),alanine aminotransferase(HR=1.003,95%CI:1.001–1.005,P=0.025),performance status(HR=2.400,95%CI:1.200–4.800,P=0.013),the number of TACE sessions(HR=0.870,95%CI:0.780–0.970,P=0.012)and Rad-score(HR=3.480,95%CI:1.416–8.552,P=0.007).Conclusions:The radiomic signatures and clinical factors can be well-used to predict the response of HCC patients to the first TACE and may help identify the patients most likely to benefit from TACE.展开更多
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti...The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.展开更多
When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key...When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid ...Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock,leading to severe seismic events and structural damage.Therefore,the development of reliable prediction models for rock bursts is paramount to mitigating these hazards.This study aims to propose a tree-based model—a Light Gradient Boosting Machine(LightGBM)—to predict the intensity of rock bursts in underground engineering.322 actual rock burst cases are collected to constitute an exhaustive rock burst dataset,which serves to train the LightGBMmodel.Two population-basedmetaheuristic algorithms are used to optimize the hyperparameters of the LightGBM model.Finally,the sensitivity analysis is used to identify the predominant factors that may incur the occurrence of rock bursts.The results show that the population-based metaheuristic algorithms have a good ability to search out the optimal hyperparameters of the LightGBM model.The developed LightGBM model yields promising performance in predicting the intensity of rock bursts,with which accuracy on training and testing sets are 0.972 and 0.944,respectively.The sensitivity analysis discloses that the risk of occurring rock burst is significantly sensitive to three factors:uniaxial compressive strength(σc),stress concentration factor(SCF),and elastic strain energy index(Wet).Moreover,this study clarifies the particular impact of these three factors on the intensity of rock bursts through the partial dependence plot.展开更多
Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in ...Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.展开更多
Hepatic artery infusion chemotherapy(HAIC)has good clinical efficacy in the treatment of advanced hepatocellular carcinoma(HCC);however,its efficacy varies.This review summarized the ability of various markers to pred...Hepatic artery infusion chemotherapy(HAIC)has good clinical efficacy in the treatment of advanced hepatocellular carcinoma(HCC);however,its efficacy varies.This review summarized the ability of various markers to predict the efficacy of HAIC and provided a reference for clinical applications.As of October 25,2023,51 articles have been retrieved based on keyword predictions and HAIC.Sixteen eligible articles were selected for inclusion in this study.Comprehensive literature analysis found that methods used to predict the efficacy of HAIC include serological testing,gene testing,and imaging testing.The above indicators and their combined forms showed excellent predictive effects in retrospective studies.This review summarized the strategies currently used to predict the efficacy of HAIC in middle and advanced HCC,analyzed each marker's ability to predict HAIC efficacy,and provided a reference for the clinical application of the prediction system.展开更多
BACKGROUND Hypothermia during laparoscopic surgery in patients with multiple trauma is a significant concern owing to its potential complications.Machine learning models offer a promising approach to predict the occur...BACKGROUND Hypothermia during laparoscopic surgery in patients with multiple trauma is a significant concern owing to its potential complications.Machine learning models offer a promising approach to predict the occurrence of intraoperative hypothermia.AIM To investigate the value of machine learning model to predict hypothermia during laparoscopic surgery in patients with multiple trauma.METHODS This retrospective study enrolled 220 patients who were admitted with multiple injuries between June 2018 and December 2023.Of these,154 patients were allocated to a training set and the remaining 66 were allocated to a validation set in a 7:3 ratio.In the training set,53 cases experienced intraoperative hypothermia and 101 did not.Logistic regression analysis was used to construct a predictive model of intraoperative hypothermia in patients with polytrauma undergoing laparoscopic surgery.The area under the curve(AUC),sensitivity,and specificity were calculated.RESULTS Comparison of the hypothermia and non-hypothermia groups found significant differences in sex,age,baseline temperature,intraoperative temperature,duration of anesthesia,duration of surgery,intraoperative fluid infusion,crystalloid infusion,colloid infusion,and pneumoperitoneum volume(P<0.05).Differences between other characteristics were not significant(P>0.05).The results of the logistic regression analysis showed that age,baseline temperature,intraoperative temperature,duration of anesthesia,and duration of surgery were independent influencing factors for intraoperative hypothermia during laparoscopic surgery(P<0.05).Calibration curve analysis showed good consistency between the predicted occurrence of intraoperative hypothermia and the actual occurrence(P>0.05).The predictive model had AUCs of 0.850 and 0.829 for the training and validation sets,respectively.CONCLUSION Machine learning effectively predicted intraoperative hypothermia in polytrauma patients undergoing laparoscopic surgery,which improved surgical safety and patient recovery.展开更多
BACKGROUND Acute myocardial infarction(AMI)is a severe cardiovascular disease caused by the blockage of coronary arteries that leads to ischemic necrosis of the myocardium.Timely medical contact is critical for succes...BACKGROUND Acute myocardial infarction(AMI)is a severe cardiovascular disease caused by the blockage of coronary arteries that leads to ischemic necrosis of the myocardium.Timely medical contact is critical for successful AMI treatment,and delays increase the risk of death for patients.Pre-hospital delay time(PDT)is a significant challenge for reducing treatment times,as identifying high-risk patients with AMI remains difficult.This study aims to construct a risk prediction model to identify high-risk patients and develop targeted strategies for effective and prompt care,ultimately reducing PDT and improving treatment outcomes.AIM To construct a nomogram model for forecasting pre-hospital delay(PHD)likelihood in patients with AMI and to assess the precision of the nomogram model in predicting PHD risk.METHODS A retrospective cohort design was employed to investigate predictive factors for PHD in patients with AMI diagnosed between January 2022 and September 2022.The study included 252 patients,with 180 randomly assigned to the development group and the remaining 72 to the validation group in a 7:3 ratio.Independent risk factors influencing PHD were identified in the development group,leading to the establishment of a nomogram model for predicting PHD in patients with AMI.The model's predictive performance was evaluated using the receiver operating characteristic curve in both the development and validation groups.RESULTS Independent risk factors for PHD in patients with AMI included living alone,hyperlipidemia,age,diabetes mellitus,and digestive system diseases(P<0.05).A characteristic curve analysis indicated area under the receiver operating characteristic curve values of 0.787(95%confidence interval:0.716–0.858)and 0.770(95%confidence interval:0.660-0.879)in the development and validation groups,respectively,demonstrating the model's good discriminatory ability.The Hosmer–Lemeshow goodness-of-fit test revealed no statistically significant disparity between the anticipated and observed incidence of PHD in both development and validation cohorts(P>0.05),indicating satisfactory model calibration.CONCLUSION The nomogram model,developed with independent risk factors,accurately forecasts PHD likelihood in AMI individuals,enabling efficient identification of PHD risk in these patients.展开更多
BACKGROUND Post-burn anxiety and depression affect considerably the quality of life and recovery of patients;however,limited research has demonstrated risk factors associated with the development of these conditions.A...BACKGROUND Post-burn anxiety and depression affect considerably the quality of life and recovery of patients;however,limited research has demonstrated risk factors associated with the development of these conditions.AIM To predict the risk of developing post-burn anxiety and depression in patients with non-mild burns using a nomogram model.METHODS We enrolled 675 patients with burns who were admitted to The Second Affiliated Hospital,Hengyang Medical School,University of South China between January 2019 and January 2023 and met the inclusion criteria.These patients were randomly divided into development(n=450)and validation(n=225)sets in a 2:1 ratio.Univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with post-burn anxiety and depression dia-gnoses,and a nomogram model was constructed.RESULTS Female sex,age<33 years,unmarried status,burn area≥30%,and burns on the head,face,and neck were independent risk factors for developing post-burn anxiety and depression in patients with non-mild burns.The nomogram model demonstrated predictive accuracies of 0.937 and 0.984 for anxiety and 0.884 and 0.923 for depression in the development and validation sets,respectively,and good predictive per-formance.Calibration and decision curve analyses confirmed the clinical utility of the nomogram.CONCLUSION The nomogram model predicted the risk of post-burn anxiety and depression in patients with non-mild burns,facilitating the early identification of high-risk patients for intervention and treatment.展开更多
BACKGROUND Colon cancer(CC)has a high incidence rate.Radical resection is the main treatment method for CC;however,liver metastasis(LM)often occurs post-surgery.The liver contains both innate and adaptive immune cells...BACKGROUND Colon cancer(CC)has a high incidence rate.Radical resection is the main treatment method for CC;however,liver metastasis(LM)often occurs post-surgery.The liver contains both innate and adaptive immune cells that monitor and remove abnormal cells and pathogens.Before LM,tumor cells secrete cytokines and exosomes to adjust the immune microenvironment of the liver,thus forming an inhibitory immune microenvironment for colonization by circulating tumor cells.This indicates that the immune state of patients with CC plays a crucial role in the occurrence and progression of LM.AIM To observe and analyze the relationship between immune status and expression of tumor factors in patients with LM of CC,and to provide a scientific interven-tion method for promoting the patient prognosis.METHODS A retrospective analysis was performed.The baseline data of 100 patients with CC and 100 patients with CC who suffered from postoperative LM and were admitted to our hospital from May 2021 to May 2023 were included in the non-occurrence and occurrence groups,respectively.The immune status of the pa-tients and the expression of tumor factor-related indicators in the two groups were compared,and the predictive value of the indicators for postoperative LM in patients with CC was analyzed.RESULTS Compared with the non-occurrence group,the expression of serum carcinoem-bryonic antigen(CEA),CA19-9,CA242,CA72-4 and CA50 in patients in the occurrence group were significantly higher,while the expression of CD3+,CD4+,CD8+,natural killer(NK)and CD4+/CD25 in patients in the occurrence group were significantly lower(P<0.05).No significant difference was observed in other baseline data between groups(P>0.05).Multivariate logistic regression model analysis revealed that the expressions of CEA,CA19-9,CA242,CA72-4,CA50,CD3+,CD4+,CD8+,NK,and CD4+/CD25 were associated with the LM in patients with CC.High expressions of serum CEA,CA19-9,CA242,CA72-4 and CA50,and low expressions of CD3+,CD4+,CD8+,NK,and CD4+/CD25 in patients with CC were risk factors for LM(OR>1,P<0.05).The receiver operating characteristic curve showed that the area under curve for CEA,CA19-9,CA242,CA72-4,CA50,CD3+,CD4+,CD8+,NK,and CD4+/CD25 in the prediction of LM in patients with CC were all>0.80,with a high predictive value.CONCLUSION The expression of tumor factors and immune state-related indices in patients with CC is closely associated with the occurrence of LM.展开更多
BACKGROUND Roux-en-Y gastric bypass(RYGB)is a widely recognized bariatric procedure that is particularly beneficial for patients with class III obesity.It aids in significant weight loss and improves obesity-related m...BACKGROUND Roux-en-Y gastric bypass(RYGB)is a widely recognized bariatric procedure that is particularly beneficial for patients with class III obesity.It aids in significant weight loss and improves obesity-related medical conditions.Despite its effectiveness,postoperative care still has challenges.Clinical evidence shows that venous thromboembolism(VTE)is a leading cause of 30-d morbidity and mortality after RYGB.Therefore,a clear unmet need exists for a tailored risk assessment tool for VTE in RYGB candidates.AIM To develop and internally validate a scoring system determining the individualized risk of 30-d VTE in patients undergoing RYGB.METHODS Using the 2016–2021 Metabolic and Bariatric Surgery Accreditation Quality Improvement Program,data from 6526 patients(body mass index≥40 kg/m^(2))who underwent RYGB were analyzed.A backward elimination multivariate analysis identified predictors of VTE characterized by pulmonary embolism and/or deep venous thrombosis within 30 d of RYGB.The resultant risk scores were derived from the coefficients of statistically significant variables.The performance of the model was evaluated using receiver operating curves through 5-fold cross-validation.RESULTS Of the 26 initial variables,six predictors were identified.These included a history of chronic obstructive pulmonary disease with a regression coefficient(Coef)of 2.54(P<0.001),length of stay(Coef 0.08,P<0.001),prior deep venous thrombosis(Coef 1.61,P<0.001),hemoglobin A1c>7%(Coef 1.19,P<0.001),venous stasis history(Coef 1.43,P<0.001),and preoperative anticoagulation use(Coef 1.24,P<0.001).These variables were weighted according to their regression coefficients in an algorithm that was generated for the model predicting 30-d VTE risk post-RYGB.The risk model's area under the curve(AUC)was 0.79[95%confidence interval(CI):0.63-0.81],showing good discriminatory power,achieving a sensitivity of 0.60 and a specificity of 0.91.Without training,the same model performed satisfactorily in patients with laparoscopic sleeve gastrectomy with an AUC of 0.63(95%CI:0.62-0.64)and endoscopic sleeve gastroplasty with an AUC of 0.76(95%CI:0.75-0.78).CONCLUSION This simple risk model uses only six variables to assist clinicians in the preoperative risk stratification of RYGB patients,offering insights into factors that heighten the risk of VTE events.展开更多
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there hav...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation.展开更多
Cancer is one of the most dangerous diseaseswith highmortality.One of the principal treatments is radiotherapy by using radiation beams to destroy cancer cells and this workflow requires a lot of experience and skill ...Cancer is one of the most dangerous diseaseswith highmortality.One of the principal treatments is radiotherapy by using radiation beams to destroy cancer cells and this workflow requires a lot of experience and skill from doctors and technicians.In our study,we focused on the 3D dose prediction problem in radiotherapy by applying the deeplearning approach to computed tomography(CT)images of cancer patients.Medical image data has more complex characteristics than normal image data,and this research aims to explore the effectiveness of data preprocessing and augmentation in the context of the 3D dose prediction problem.We proposed four strategies to clarify our hypothesis in different aspects of applying data preprocessing and augmentation.In strategies,we trained our custom convolutional neural network model which has a structure inspired by the U-net,and residual blocks were also applied to the architecture.The output of the network is added with a rectified linear unit(Re-Lu)function for each pixel to ensure there are no negative values,which are absurd with radiation doses.Our experiments were conducted on the dataset of the Open Knowledge-Based Planning Challenge which was collected from head and neck cancer patients treatedwith radiation therapy.The results of four strategies showthat our hypothesis is rational by evaluating metrics in terms of the Dose-score and the Dose-volume histogram score(DVH-score).In the best training cases,the Dose-score is 3.08 and the DVH-score is 1.78.In addition,we also conducted a comparison with the results of another study in the same context of using the loss function.展开更多
This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the...This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.展开更多
基金supported by grants from the National Nat-ural Science Foundation of China (81570587 and 81700557)the Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology (2013A061401007 and 2017B030314018)+3 种基金Guangdong Provincial Natural Science Funds for Major Basic Science Culture Project (2015A030308010)Science and Technology Program of Guangzhou (201704020150)the Natural Science Foundations of Guangdong province (2016A030310141 and 2020A1515010091)Young Teachers Training Project of Sun Yat-sen University (K0401068) and the Guangdong Science and Technology Innovation Strategy (pdjh2022b0010 and pdjh2023a0002)。
文摘Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.
基金Supported by the National Natural Science Foundation of China Youth Training Project,No.2021GZR003and Medical-engineering Interdisciplinary Research Youth Training Project,No.2022YGJC001.
文摘BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive model for preoperative identification of HCC.METHODS A retrospective analysis of 884 patients who underwent liver resection and pathology evaluation from February 2021 to August 2023 was conducted at the Oriental Hepatobiliary Surgery Hospital.The patients were divided into the modeling group(n=720)and the control group(n=164).The study included conventional ultrasound,2D-SWE,and preoperative laboratory tests.Multiple logistic regression was used to identify independent predictive factors for RESULTS In the modeling group analysis,maximal elasticity(Emax)of tumors and their peripheries,platelet count,cirrhosis,and blood flow were independent risk indicators for malignancies.These factors yielded an area under the curve of 0.77(95%confidence interval:0.73-0.81)with 84%sensitivity and 61%specificity.The model demonstrated good calibration in both the construction and validation cohorts,as shown by the calibration graph and Hosmer-Lemeshow test(P=0.683 and P=0.658,respectively).Additionally,the mean elasticity(Emean)of the tumor periphery was identified as a risk factor for microvascular invasion(MVI)in malignant liver tumors(P=0.003).Patients receiving antiviral treatment differed significantly in platelet count(P=0.002),Emax of tumors(P=0.033),Emean of tumors(P=0.042),Emax at tumor periphery(P<0.001),and Emean at tumor periphery(P=0.003).CONCLUSION 2D-SWE’s hardness value serves as a valuable marker for enhancing the preoperative diagnosis of malignant liver lesions,correlating significantly with MVI and antiviral treatment efficacy.
基金Supported by Natural Science Foundation of Sichuan Province,No.2022NSFSC1378.
文摘BACKGROUND Liver cirrhosis patients admitted to intensive care unit(ICU)have a high mortality rate.AIM To establish and validate a nomogram for predicting in-hospital mortality of ICU patients with liver cirrhosis.METHODS We extracted demographic,etiological,vital sign,laboratory test,comorbidity,complication,treatment,and severity score data of liver cirrhosis patients from the Medical Information Mart for Intensive Care IV(MIMIC-IV)and electronic ICU(eICU)collaborative research database(eICU-CRD).Predictor selection and model building were based on the MIMIC-IV dataset.The variables selected through least absolute shrinkage and selection operator analysis were further screened through multivariate regression analysis to obtain final predictors.The final predictors were included in the multivariate logistic regression model,which was used to construct a nomogram.Finally,we conducted external validation using the eICU-CRD.The area under the receiver operating characteristic curve(AUC),decision curve,and calibration curve were used to assess the efficacy of the models.RESULTS Risk factors,including the mean respiratory rate,mean systolic blood pressure,mean heart rate,white blood cells,international normalized ratio,total bilirubin,age,invasive ventilation,vasopressor use,maximum stage of acute kidney injury,and sequential organ failure assessment score,were included in the multivariate logistic regression.The model achieved AUCs of 0.864 and 0.808 in the MIMIC-IV and eICU-CRD databases,respectively.The calibration curve also confirmed the predictive ability of the model,while the decision curve confirmed its clinical value.CONCLUSION The nomogram has high accuracy in predicting in-hospital mortality.Improving the included predictors may help improve the prognosis of patients.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0606703)the National Natural Science Foundation of China(Grant No.41975116)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202025)。
文摘The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices.The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies(SSTAs)in the equatorial Pacific by training a convolutional neural network(CNN)model with historical simulations from CMIP6 models.Compared with dynamical models,the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific,but not in the eastern Pacific.The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months.A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.
文摘Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks.The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors.The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors.For selected meteorological data,RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs.These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage.
文摘Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treatment response can help patients choose a reasonable treatment plan.This study aimed to investigate the value of the radiomic-clinical model in predicting the efficacy of the first TACE treatment for HCC to prolong patient survival.Methods:A total of 164 patients with HCC who underwent the first TACE from January 2017 to September 2021 were analyzed.The tumor response was assessed by modified response evaluation criteria in solid tumors(mRECIST),and the response of the first TACE to each session and its correlation with overall survival were evaluated.The radiomic signatures associated with the treatment response were identified by the least absolute shrinkage and selection operator(LASSO),and four machine learning models were built with different types of regions of interest(ROIs)(tumor and corresponding tissues)and the model with the best performance was selected.The predictive performance was assessed with receiver operating characteristic(ROC)curves and calibration curves.Results:Of all the models,the random forest(RF)model with peritumor(+10 mm)radiomic signatures had the best performance[area under ROC curve(AUC)=0.964 in the training cohort,AUC=0.949 in the validation cohort].The RF model was used to calculate the radiomic score(Rad-score),and the optimal cutoff value(0.34)was calculated according to the Youden’s index.Patients were then divided into a high-risk group(Rad-score>0.34)and a low-risk group(Rad-score≤0.34),and a nomogram model was successfully established to predict treatment response.The predicted treatment response also allowed for significant discrimination of Kaplan-Meier curves.Multivariate Cox regression identified six independent prognostic factors for overall survival,including male[hazard ratio(HR)=0.500,95%confidence interval(CI):0.260–0.962,P=0.038],alpha-fetoprotein(HR=1.003,95%CI:1.002–1.004,P<0.001),alanine aminotransferase(HR=1.003,95%CI:1.001–1.005,P=0.025),performance status(HR=2.400,95%CI:1.200–4.800,P=0.013),the number of TACE sessions(HR=0.870,95%CI:0.780–0.970,P=0.012)and Rad-score(HR=3.480,95%CI:1.416–8.552,P=0.007).Conclusions:The radiomic signatures and clinical factors can be well-used to predict the response of HCC patients to the first TACE and may help identify the patients most likely to benefit from TACE.
基金funded jointly by the National Nature Science Funds of China(No.42274010)the Fundamental Research Funds for the Central Universities(Nos.2023000540,2023000407).
文摘The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.
基金supported by the National Natural Science Foundation of China(No.52074042)National Key R&D Program of China(No.2018YFC1504802).
文摘When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
文摘Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock,leading to severe seismic events and structural damage.Therefore,the development of reliable prediction models for rock bursts is paramount to mitigating these hazards.This study aims to propose a tree-based model—a Light Gradient Boosting Machine(LightGBM)—to predict the intensity of rock bursts in underground engineering.322 actual rock burst cases are collected to constitute an exhaustive rock burst dataset,which serves to train the LightGBMmodel.Two population-basedmetaheuristic algorithms are used to optimize the hyperparameters of the LightGBM model.Finally,the sensitivity analysis is used to identify the predominant factors that may incur the occurrence of rock bursts.The results show that the population-based metaheuristic algorithms have a good ability to search out the optimal hyperparameters of the LightGBM model.The developed LightGBM model yields promising performance in predicting the intensity of rock bursts,with which accuracy on training and testing sets are 0.972 and 0.944,respectively.The sensitivity analysis discloses that the risk of occurring rock burst is significantly sensitive to three factors:uniaxial compressive strength(σc),stress concentration factor(SCF),and elastic strain energy index(Wet).Moreover,this study clarifies the particular impact of these three factors on the intensity of rock bursts through the partial dependence plot.
基金funded by Outstanding Youth Team Project of Central Universities(QNTD202308).
文摘Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.
基金Supported by the Research Fund of Beijing Tsinghua Changgung Hospital,No.12021C11016.
文摘Hepatic artery infusion chemotherapy(HAIC)has good clinical efficacy in the treatment of advanced hepatocellular carcinoma(HCC);however,its efficacy varies.This review summarized the ability of various markers to predict the efficacy of HAIC and provided a reference for clinical applications.As of October 25,2023,51 articles have been retrieved based on keyword predictions and HAIC.Sixteen eligible articles were selected for inclusion in this study.Comprehensive literature analysis found that methods used to predict the efficacy of HAIC include serological testing,gene testing,and imaging testing.The above indicators and their combined forms showed excellent predictive effects in retrospective studies.This review summarized the strategies currently used to predict the efficacy of HAIC in middle and advanced HCC,analyzed each marker's ability to predict HAIC efficacy,and provided a reference for the clinical application of the prediction system.
文摘BACKGROUND Hypothermia during laparoscopic surgery in patients with multiple trauma is a significant concern owing to its potential complications.Machine learning models offer a promising approach to predict the occurrence of intraoperative hypothermia.AIM To investigate the value of machine learning model to predict hypothermia during laparoscopic surgery in patients with multiple trauma.METHODS This retrospective study enrolled 220 patients who were admitted with multiple injuries between June 2018 and December 2023.Of these,154 patients were allocated to a training set and the remaining 66 were allocated to a validation set in a 7:3 ratio.In the training set,53 cases experienced intraoperative hypothermia and 101 did not.Logistic regression analysis was used to construct a predictive model of intraoperative hypothermia in patients with polytrauma undergoing laparoscopic surgery.The area under the curve(AUC),sensitivity,and specificity were calculated.RESULTS Comparison of the hypothermia and non-hypothermia groups found significant differences in sex,age,baseline temperature,intraoperative temperature,duration of anesthesia,duration of surgery,intraoperative fluid infusion,crystalloid infusion,colloid infusion,and pneumoperitoneum volume(P<0.05).Differences between other characteristics were not significant(P>0.05).The results of the logistic regression analysis showed that age,baseline temperature,intraoperative temperature,duration of anesthesia,and duration of surgery were independent influencing factors for intraoperative hypothermia during laparoscopic surgery(P<0.05).Calibration curve analysis showed good consistency between the predicted occurrence of intraoperative hypothermia and the actual occurrence(P>0.05).The predictive model had AUCs of 0.850 and 0.829 for the training and validation sets,respectively.CONCLUSION Machine learning effectively predicted intraoperative hypothermia in polytrauma patients undergoing laparoscopic surgery,which improved surgical safety and patient recovery.
文摘BACKGROUND Acute myocardial infarction(AMI)is a severe cardiovascular disease caused by the blockage of coronary arteries that leads to ischemic necrosis of the myocardium.Timely medical contact is critical for successful AMI treatment,and delays increase the risk of death for patients.Pre-hospital delay time(PDT)is a significant challenge for reducing treatment times,as identifying high-risk patients with AMI remains difficult.This study aims to construct a risk prediction model to identify high-risk patients and develop targeted strategies for effective and prompt care,ultimately reducing PDT and improving treatment outcomes.AIM To construct a nomogram model for forecasting pre-hospital delay(PHD)likelihood in patients with AMI and to assess the precision of the nomogram model in predicting PHD risk.METHODS A retrospective cohort design was employed to investigate predictive factors for PHD in patients with AMI diagnosed between January 2022 and September 2022.The study included 252 patients,with 180 randomly assigned to the development group and the remaining 72 to the validation group in a 7:3 ratio.Independent risk factors influencing PHD were identified in the development group,leading to the establishment of a nomogram model for predicting PHD in patients with AMI.The model's predictive performance was evaluated using the receiver operating characteristic curve in both the development and validation groups.RESULTS Independent risk factors for PHD in patients with AMI included living alone,hyperlipidemia,age,diabetes mellitus,and digestive system diseases(P<0.05).A characteristic curve analysis indicated area under the receiver operating characteristic curve values of 0.787(95%confidence interval:0.716–0.858)and 0.770(95%confidence interval:0.660-0.879)in the development and validation groups,respectively,demonstrating the model's good discriminatory ability.The Hosmer–Lemeshow goodness-of-fit test revealed no statistically significant disparity between the anticipated and observed incidence of PHD in both development and validation cohorts(P>0.05),indicating satisfactory model calibration.CONCLUSION The nomogram model,developed with independent risk factors,accurately forecasts PHD likelihood in AMI individuals,enabling efficient identification of PHD risk in these patients.
基金the Natural Science Foundation of Hunan Provincial Department of Science and Technology,Departmental Joint Fund,No.2023JJ60360.
文摘BACKGROUND Post-burn anxiety and depression affect considerably the quality of life and recovery of patients;however,limited research has demonstrated risk factors associated with the development of these conditions.AIM To predict the risk of developing post-burn anxiety and depression in patients with non-mild burns using a nomogram model.METHODS We enrolled 675 patients with burns who were admitted to The Second Affiliated Hospital,Hengyang Medical School,University of South China between January 2019 and January 2023 and met the inclusion criteria.These patients were randomly divided into development(n=450)and validation(n=225)sets in a 2:1 ratio.Univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with post-burn anxiety and depression dia-gnoses,and a nomogram model was constructed.RESULTS Female sex,age<33 years,unmarried status,burn area≥30%,and burns on the head,face,and neck were independent risk factors for developing post-burn anxiety and depression in patients with non-mild burns.The nomogram model demonstrated predictive accuracies of 0.937 and 0.984 for anxiety and 0.884 and 0.923 for depression in the development and validation sets,respectively,and good predictive per-formance.Calibration and decision curve analyses confirmed the clinical utility of the nomogram.CONCLUSION The nomogram model predicted the risk of post-burn anxiety and depression in patients with non-mild burns,facilitating the early identification of high-risk patients for intervention and treatment.
文摘BACKGROUND Colon cancer(CC)has a high incidence rate.Radical resection is the main treatment method for CC;however,liver metastasis(LM)often occurs post-surgery.The liver contains both innate and adaptive immune cells that monitor and remove abnormal cells and pathogens.Before LM,tumor cells secrete cytokines and exosomes to adjust the immune microenvironment of the liver,thus forming an inhibitory immune microenvironment for colonization by circulating tumor cells.This indicates that the immune state of patients with CC plays a crucial role in the occurrence and progression of LM.AIM To observe and analyze the relationship between immune status and expression of tumor factors in patients with LM of CC,and to provide a scientific interven-tion method for promoting the patient prognosis.METHODS A retrospective analysis was performed.The baseline data of 100 patients with CC and 100 patients with CC who suffered from postoperative LM and were admitted to our hospital from May 2021 to May 2023 were included in the non-occurrence and occurrence groups,respectively.The immune status of the pa-tients and the expression of tumor factor-related indicators in the two groups were compared,and the predictive value of the indicators for postoperative LM in patients with CC was analyzed.RESULTS Compared with the non-occurrence group,the expression of serum carcinoem-bryonic antigen(CEA),CA19-9,CA242,CA72-4 and CA50 in patients in the occurrence group were significantly higher,while the expression of CD3+,CD4+,CD8+,natural killer(NK)and CD4+/CD25 in patients in the occurrence group were significantly lower(P<0.05).No significant difference was observed in other baseline data between groups(P>0.05).Multivariate logistic regression model analysis revealed that the expressions of CEA,CA19-9,CA242,CA72-4,CA50,CD3+,CD4+,CD8+,NK,and CD4+/CD25 were associated with the LM in patients with CC.High expressions of serum CEA,CA19-9,CA242,CA72-4 and CA50,and low expressions of CD3+,CD4+,CD8+,NK,and CD4+/CD25 in patients with CC were risk factors for LM(OR>1,P<0.05).The receiver operating characteristic curve showed that the area under curve for CEA,CA19-9,CA242,CA72-4,CA50,CD3+,CD4+,CD8+,NK,and CD4+/CD25 in the prediction of LM in patients with CC were all>0.80,with a high predictive value.CONCLUSION The expression of tumor factors and immune state-related indices in patients with CC is closely associated with the occurrence of LM.
文摘BACKGROUND Roux-en-Y gastric bypass(RYGB)is a widely recognized bariatric procedure that is particularly beneficial for patients with class III obesity.It aids in significant weight loss and improves obesity-related medical conditions.Despite its effectiveness,postoperative care still has challenges.Clinical evidence shows that venous thromboembolism(VTE)is a leading cause of 30-d morbidity and mortality after RYGB.Therefore,a clear unmet need exists for a tailored risk assessment tool for VTE in RYGB candidates.AIM To develop and internally validate a scoring system determining the individualized risk of 30-d VTE in patients undergoing RYGB.METHODS Using the 2016–2021 Metabolic and Bariatric Surgery Accreditation Quality Improvement Program,data from 6526 patients(body mass index≥40 kg/m^(2))who underwent RYGB were analyzed.A backward elimination multivariate analysis identified predictors of VTE characterized by pulmonary embolism and/or deep venous thrombosis within 30 d of RYGB.The resultant risk scores were derived from the coefficients of statistically significant variables.The performance of the model was evaluated using receiver operating curves through 5-fold cross-validation.RESULTS Of the 26 initial variables,six predictors were identified.These included a history of chronic obstructive pulmonary disease with a regression coefficient(Coef)of 2.54(P<0.001),length of stay(Coef 0.08,P<0.001),prior deep venous thrombosis(Coef 1.61,P<0.001),hemoglobin A1c>7%(Coef 1.19,P<0.001),venous stasis history(Coef 1.43,P<0.001),and preoperative anticoagulation use(Coef 1.24,P<0.001).These variables were weighted according to their regression coefficients in an algorithm that was generated for the model predicting 30-d VTE risk post-RYGB.The risk model's area under the curve(AUC)was 0.79[95%confidence interval(CI):0.63-0.81],showing good discriminatory power,achieving a sensitivity of 0.60 and a specificity of 0.91.Without training,the same model performed satisfactorily in patients with laparoscopic sleeve gastrectomy with an AUC of 0.63(95%CI:0.62-0.64)and endoscopic sleeve gastroplasty with an AUC of 0.76(95%CI:0.75-0.78).CONCLUSION This simple risk model uses only six variables to assist clinicians in the preoperative risk stratification of RYGB patients,offering insights into factors that heighten the risk of VTE events.
基金Supported by the Talent Training Plan during the"14th Five-Year Plan"period of Beijing Shijitan Hospital Affiliated to Capital Medical University,No.2023LJRCLFQ.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation.
基金sponsored by the Institute of Information Technology(Vietnam Academy of Science and Technology)with Project Code“CS24.01”.
文摘Cancer is one of the most dangerous diseaseswith highmortality.One of the principal treatments is radiotherapy by using radiation beams to destroy cancer cells and this workflow requires a lot of experience and skill from doctors and technicians.In our study,we focused on the 3D dose prediction problem in radiotherapy by applying the deeplearning approach to computed tomography(CT)images of cancer patients.Medical image data has more complex characteristics than normal image data,and this research aims to explore the effectiveness of data preprocessing and augmentation in the context of the 3D dose prediction problem.We proposed four strategies to clarify our hypothesis in different aspects of applying data preprocessing and augmentation.In strategies,we trained our custom convolutional neural network model which has a structure inspired by the U-net,and residual blocks were also applied to the architecture.The output of the network is added with a rectified linear unit(Re-Lu)function for each pixel to ensure there are no negative values,which are absurd with radiation doses.Our experiments were conducted on the dataset of the Open Knowledge-Based Planning Challenge which was collected from head and neck cancer patients treatedwith radiation therapy.The results of four strategies showthat our hypothesis is rational by evaluating metrics in terms of the Dose-score and the Dose-volume histogram score(DVH-score).In the best training cases,the Dose-score is 3.08 and the DVH-score is 1.78.In addition,we also conducted a comparison with the results of another study in the same context of using the loss function.
文摘This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.